1
|
Kuznetsova EA, Rysaeva RR, Smolobochkin AV, Gazizov AS, Gerasimova TP, Gerasimova DP, Lodochnikova OA, Morozov VI, Vatsadze SZ, Burilov AR, Pudovik MA. Hypervalent Sulfur Derivatives as Sulfenylating Reagents: Visible-Light-Mediated Direct Thiolation of Activated C(sp 2)-H Bonds with Dihalosulfuranes. Org Lett 2024; 26:4323-4328. [PMID: 38723192 DOI: 10.1021/acs.orglett.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In contrast to hypervalent iodine compounds, the chemistry of their sulfur analogues has been considerably less explored. Herein, we report the direct C-H bond thiolation of electron-rich heterocycles, arenes, and 1,3-dicarbonyls by dichlorosulfuranes under mild conditions. Mechanistic studies and density functional theory calculations suggest the radical chain mechanism of the disclosed transformation. The key to success is attributed to a strikingly low S-Cl bond dissociation energy, which enables the generation of radical species upon exposure to daylight.
Collapse
Affiliation(s)
- Elizaveta A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
- Kazan National Research Technological University, Karla Marksa Street 68, Kazan 420015, Russian Federation
| | - Regina R Rysaeva
- Organic Chemistry Department, Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Tatyana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Daria P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Olga A Lodochnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Vladimir I Morozov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| | - Michail A Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova Street 8, Kazan 420088, Russian Federation
| |
Collapse
|
2
|
Kanemoto K, Yoshimura K, Ono K, Ding W, Ito S, Yoshikai N. Amino- and Alkoxybenziodoxoles: Facile Preparation and Use as Arynophiles. Chemistry 2024; 30:e202400894. [PMID: 38494436 DOI: 10.1002/chem.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
We report here on the facile synthesis of amino- and alkoxy-λ3-iodanes supported by a benziodoxole (BX) template and their use as arynophiles. The amino- and alkoxy-BX derivatives can be readily synthesized by reacting the respective amines or alcohols with chlorobenziodoxole in the presence of a suitable base. Unlike previously known nitrogen- and oxygen-bound iodane compounds, which have primarily been employed as electrophilic group transfer agents or oxidants, the present amino- and alkoxy-BX reagents manifest themselves as nucleophilic amino and alkoxy transfer agents toward arynes. This reactivity leads to the aryne insertion into the N-I(III) or O-I(III) bond to afford ortho-amino- and ortho-alkoxy-arylbenziodoxoles, iodane compounds nontrivial to procure by existing methods. The BX group in these insertion products exhibits excellent leaving group ability, enabling diverse downstream transformations.
Collapse
Affiliation(s)
- Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Ken Yoshimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Koki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Wei Ding
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
4
|
Arakawa C, Kanemoto K, Nakai K, Wang C, Morohashi S, Kwon E, Ito S, Yoshikai N. Carboiodanation of Arynes: Organoiodine(III) Compounds as Nucleophilic Organometalloids. J Am Chem Soc 2024; 146:3910-3919. [PMID: 38315817 DOI: 10.1021/jacs.3c11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Organic iodine(III) compounds represent the most widely used hypervalent halogen compounds in organic synthesis, where they typically perform the role of an electrophile or oxidant to functionalize electron-rich or -nucleophilic organic compounds. In contrast to this convention, we discovered their unique reactivity as organometallic-like nucleophiles toward arynes. Equipped with diverse transferable ligands and supported by a tethered spectator ligand, the organoiodine(III) compounds undergo addition across the electrophilic C-C triple bond of arynes while retaining the trivalency of the iodine center. This carboiodanation reaction can forge a variety of aryl-alkynyl, aryl-alkenyl, and aryl-(hetero)aryl bonds along with the concurrent formation of an aryl-iodine(III) bond under mild conditions. The newly formed aryl-iodine(III) bond serves as a versatile linchpin for downstream transformations, particularly as an electrophilic reaction site. The amphoteric nature of the iodine(III) group as a metalloid and a leaving group in this sequence enables the flexible and expedient synthesis of extended π-conjugated molecules and privileged biarylphosphine ligands, where all of the iodine(III)-containing compounds can be handled as air- and thermally stable materials.
Collapse
Affiliation(s)
- Chisaki Arakawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Katsuya Nakai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Shunya Morohashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Milzarek TM, Ramirez NP, Liu XY, Waser J. One-pot synthesis of functionalized bis(trifluoromethylated)benziodoxoles from iodine(I) precursors. Chem Commun (Camb) 2023; 59:12637-12640. [PMID: 37791867 DOI: 10.1039/d3cc04525k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bis(trifluoromethylated)benziodoxoles (Bx) are broadly used cyclic hypervalent iodine reagents due to their stability and unique chemical properties. However, current methods to access them require several steps and long reaction times, making their synthesis tedious. Herein, a direct one-pot synthesis of bis(trifluoromethylated) Bx reagents from iodine(I) precursors is reported, enabling the synthesis of functionalized reagents.
Collapse
Affiliation(s)
- Tobias M Milzarek
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Nieves P Ramirez
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Luo H, Liu FZ, Liu Y, Chu Z, Yan K. Biasing Divergent Polycyclic Aromatic Hydrocarbon Oxidation Pathway by Solvent-Free Mechanochemistry. J Am Chem Soc 2023. [PMID: 37428958 DOI: 10.1021/jacs.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Precise control in reaction selectivity is the goal in modern organic synthesis, and it has been widely studied throughout the synthetic community. In comparison, control of divergent reactivity of a given reagent under different reaction conditions is relatively less explored aspect of chemical selectivity. We herein report an unusual reaction between polycyclic aromatic hydrocarbons and periodic acid H5IO6 (1), where the product outcome is dictated by the choice of reaction conditions. That is, reactions under solution-based condition give preferentially C-H iodination products, while reactions under solvent-free mechanochemical condition provide C-H oxidation quinone products. Control experiments further indicated that the iodination product is not a reaction intermediate toward the oxidation product and vice versa. Mechanistic studies unveiled an in situ crystalline-to-crystalline phase change in 2 during ball-milling treatment, where we assigned it as a polymeric hydrogen-bond network of 1. We believe that this polymeric crystalline phase shields the more embedded electrophilic I═O group of 1 from C-H iodination and bias a divergent C-H oxidation pathway (with I═O) in the solid state. Collectively, this work demonstrates that mechanochemistry can be employed to completely switch a reaction pathway and unmask hidden reactivity of chemical reagents.
Collapse
Affiliation(s)
- Hao Luo
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoyang Chu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
7
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
8
|
Yoshikai N. Exploring New Reactions and Syntheses of Trivalent Iodine Compounds. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022; 61:e202201240. [DOI: 10.1002/anie.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
10
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
11
|
Chai J, Ding W, Wang C, Ito S, Wu J, Yoshikai N. Ritter-type iodo(iii)amidation of unactivated alkynes for the stereoselective synthesis of multisubstituted enamides. Chem Sci 2021; 12:15128-15133. [PMID: 34909154 PMCID: PMC8612402 DOI: 10.1039/d1sc05240c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023] Open
Abstract
The Ritter reaction, Brønsted- or Lewis acid-mediated amidation of alkene or alcohol with nitrile via a carbocation, represents a classical method for the synthesis of tertiary amides. Although analogous reactions through a vinyl cation or a species alike may offer a route to enamide, an important synthetic building block as well as a common functionality in bioactive compounds, such transformations remain largely elusive. Herein, we report a Ritter-type trans-difunctionalization of alkynes with a trivalent iodine electrophile and nitrile, which affords β-iodanyl enamides in moderate to good yields. Mediated by benziodoxole triflate (BXT), the reaction proves applicable to a variety of internal alkynes as well as to various alkyl- and arylnitriles. The benziodoxole group in the product serves as a versatile handle for further transformations, thus allowing for the preparation of various tri- and tetrasubstituted enamides that are not readily accessible by other means.
Collapse
Affiliation(s)
- Jinkui Chai
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University Zhengzhou 450001 P. R. China .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore.,Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University Shaoxing 312000 P. R. China
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Junliang Wu
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore.,Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
12
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
13
|
|
14
|
Laskar RA, Ding W, Yoshikai N. Iodo(III)-Meyer-Schuster Rearrangement of Propargylic Alcohols Promoted by Benziodoxole Triflate. Org Lett 2021; 23:1113-1117. [PMID: 33439023 DOI: 10.1021/acs.orglett.1c00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benziodoxole triflate (BXT), a cyclic iodine(III) electrophile, has been found to promote a rearrangement of propargylic alcohols into α,β-unsaturated ketones bearing an α-λ3-iodanyl group. This iodo(III)-Meyer-Schuster rearrangement proceeds under mild conditions and tolerates a variety of functionalized propargylic alcohols, thus complementing previously reported halogen-intercepted Meyer-Schuster rearrangement. The α-λ3-iodanylenones can be utilized for facile Pd-catalyzed cross-coupling for the synthesis of multisubstituted enones.
Collapse
Affiliation(s)
- Roshayed Ali Laskar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|