1
|
Kang YR, Jiao YT, Zhao CF, Zhang XW, Huang WH. Electroactive polymer tag modified nanosensors for enhanced intracellular ATP detection. Analyst 2024; 149:3530-3536. [PMID: 38757525 DOI: 10.1039/d4an00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.
Collapse
Affiliation(s)
- Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Chen-Fei Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, P. R. China
| |
Collapse
|
2
|
Liu R, Wang D. Tunneling Electron Transfer across Cell Membrane via Au Nanoparticles in Single Living Cells. NANO LETTERS 2024; 24:2451-2456. [PMID: 38358313 DOI: 10.1021/acs.nanolett.3c03928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Herein, we present a new and simple electrochemical method to detect the intracellular electroactive substances by utilizing the electron tunnelling processes at the metal nanoparticles inside the cells. Intriguing discrete oxidation and reduction current spikes are obtained when testing the cells with loaded Au nanoparticles at the ultramicroelectrodes, which should come from reactive oxygen species (ROS) inside the single cell. The charges enclosed in the current spikes represent the ROS content inside the living cells, as confirmed by the fluorescence studies. As this simple electron tunnelling approach needs no nanoelectrodes or nanotip penetration processes, we believe it could have great potential applications in electrochemical analysis of single living cells.
Collapse
Affiliation(s)
- Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Huang K, Wang YH, Zhang H, Wang TY, Liu XH, Liu L, Jiang H, Wang XM. Application and outlook of electrochemical technology in single-cell analysis. Biosens Bioelectron 2023; 242:115741. [PMID: 37816284 DOI: 10.1016/j.bios.2023.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Cellular heterogeneity, especially in some important diseased cells like tumor cells, acts as an invisible driver for disease development like cancer progression in the tumor ecosystem, contributing to differences in the macroscopic and microscopic detection of disease lesions like tumors. Traditional analysis techniques choose group information masked by the mean as the analysis sample, making it difficult to achieve precise diagnosis and target treatment, on which could be shed light via the single-cell level determination/bioanalysis. Hence, in this article we have reviewed the special characteristic differences among various kinds of typical single-cell bioanalysis strategies and electrochemical techniques, and then focused on the recent advance and special bio-applications of electrochemiluminescence and micro-nano electrochemical sensing mediated in single-cell bioimaging & bioanalysis. Especially, we have summarized the relevant research exploration of the possibility to establish the in-situ single-cell electrochemical methods to detect cell heterogeneity through determination of specific biomolecules and bioimaging of some important biological processes. Eventually, this review has explored some important advances of electrochemical single-cell detection techniques for the real-time cellular bioimaging and diagnostics of some disease lesions like tumors. It raises the possibility to provide the specific in-situ platform to exploit the versatile, sensitive, and high-resolution electrochemical single-cell analysis for the promising biomedical applications like rapid tracing of some disease lesions or in vivo bioimaging for precise cancer theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Han Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ting Ya Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiao Hui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xue Mei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Liu K, Zhang Z, Liu R, Li JP, Jiang D, Pan R. Click-Chemistry-Enabled Nanopipettes for the Capture and Dynamic Analysis of a Single Mitochondrion inside One Living Cell. Angew Chem Int Ed Engl 2023; 62:e202303053. [PMID: 37334855 DOI: 10.1002/anie.202303053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zheng Zhang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Jie P Li
- The State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
5
|
Dong W, Gong F, Zhao Y, Bai H, Yang R. Ferroptosis and mitochondrial dysfunction in acute central nervous system injury. Front Cell Neurosci 2023; 17:1228968. [PMID: 37622048 PMCID: PMC10445767 DOI: 10.3389/fncel.2023.1228968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Acute central nervous system injuries (ACNSI), encompassing traumatic brain injury (TBI), non-traumatic brain injury like stroke and encephalomeningitis, as well as spinal cord injuries, are linked to significant rates of disability and mortality globally. Nevertheless, effective and feasible treatment plans are still to be formulated. There are primary and secondary injuries occurred after ACNSI. Most ACNSIs exhibit comparable secondary injuries, which offer numerous potential therapeutic targets for enhancing clinical outcomes. Ferroptosis, a newly discovered form of cell death, is characterized as a lipid peroxidation process that is dependent on iron and oxidative conditions, which is also indispensable to mitochondria. Ferroptosis play a vital role in many neuropathological pathways, and ACNSIs may induce mitochondrial dysfunction, thereby indicating the essentiality of the mitochondrial connection to ferroptosis in ACNSIs. Nevertheless, there remains a lack of clarity regarding the involvement of mitochondria in the occurrence of ferroptosis as a secondary injuries of ACNSIs. In recent studies, anti-ferroptosis agents such as the ferroptosis inhibitor Ferrostain-1 and iron chelation therapy have shown potential in ameliorating the deleterious effects of ferroptosis in cases of traumatic ACNSI. The importance of this evidence is extremely significant in relation to the research and control of ACNSIs. Therefore, our review aims to provide researchers focusing on enhancing the therapeutic outcomes of ACNSIs with valuable insights by summarizing the physiopathological mechanisms of ACNSIs and exploring the correlation between ferroptosis, mitochondrial dysfunction, and ACNSIs.
Collapse
Affiliation(s)
- Wenxue Dong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Fanghe Gong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yu Zhao
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ruixin Yang
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
6
|
A dual-salt fluorescent probe for specific recognition of mitochondrial NADH and potential cancer diagnosis. Talanta 2023; 257:124393. [PMID: 36858015 DOI: 10.1016/j.talanta.2023.124393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) is a kind of coenzyme and widely works as a biomarker in cancer cells. It plays a crucial role in many cellular metabolic processes, especially NADH in mitochondria is indispensable for the mitochondrial respiration chain that produces ATP. Herein, we designed a fluorescent probe Mito-FCC based on an ethylene-bridging dual-salt structure, in which benzo[e]indolium fluorophore was used as the mitochondria-targeting group and 1-methylquinolinium moiety as the NADH recognition unit. Mito-FCC exhibited high sensitivity and selectivity for NADH with a rapid "turn-on" fluorescence signal. The dual-salt structure endowed the probe with a reliable mitochondria-targeted ability even after the recognition unit was reduced by NADH. With the help of the probe, the fluctuations of endogenous NADH induced by glucose or pyruvate were imaged. Besides, Mito-FCC had a capability to make a distinction between cancer cells and normal cells due that the content of NADH in cancer cells was distinctly higher than that in normal ones. Notably, the visualization of tumor in vivo through monitoring NADH using Mito-FCC was realized successfully. These experimental results showed that Mito-FCC hold a great perspective in study of mitochondrial function and potential diagnosis of cancer diseases.
Collapse
|
7
|
Jiao YT, Jiang H, Wu WT, Qi YT, Wen MY, Yang XK, Kang YR, Zhang XW, Amatore C, Huang WH. Dual-channel nanoelectrochemical sensor for monitoring intracellular ROS and NADH kinetic variations of their concentrations. Biosens Bioelectron 2023; 222:114928. [PMID: 36450163 DOI: 10.1016/j.bios.2022.114928] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) and nicotinamide adenine dinucleotide (NADH) are important intracellular redox-active molecules involved in various pathological processes including inflammation, neurodegenerative diseases, and cancer. However, the fast dynamic changes and mutual regulatory kinetic relationship between intracellular ROS and NADH in these biological processes are still hard to simultaneously investigate. A dual-channel nanowire electrode (DC-NWE) integrating two conductive nanowires, one functionalized with platinum nanoparticles and the other with conductive polymer, was nanofabricated for the selective and simultaneous real-time monitoring of intracellular ROS and NADH release by mitochondria in single living MCF-7 tumoral cells stimulated by resveratrol. The production of ROS was observed to occur tenths of a second before the release of NADH, a significant new piece of information suggesting a mechanism of action of resveratrol. Beyond the importance of the specific data gathered in this study, this work established the feasibility of simultaneously monitoring multiple species and analyzing their kinetics relationships over sub-second time scales thanks to dual-channel nanowire electrodes. It is believed that this concept and its associated nanoelectrochemical tools might benefit to a deeper understanding of mutual regulatory relationship between intracellular crucial molecular markers during physiological and pathological processes as well as for evaluating medical treatments.
Collapse
Affiliation(s)
- Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China; PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, 75005, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Wang Y, Huang K, Qin Z, Zeng J, Zhang Y, Yin L, Liu X, Jiang H, Wang X. Ultraprecise Real-Time Monitoring of Single Cells in Tumors in Response to Metal Ion-Mediated RNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37291-37300. [PMID: 35971957 DOI: 10.1021/acsami.2c06306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the deepening of cancer clinical research, miRNAs provide new ideas for molecular diagnosis and treatment of tumors. Improving the molecular delivery efficiency of miRNA is the key to the success of miRNA therapy. We have established self-assembly diagnosis and treatment technologies that can be used to achieve accurate targeting and "cargo" delivery at the cellular level. This technology builds a miRNA (let-7a) delivery system based on metal precursor [Au(III) and Fe(II)]-mediated tumor microenvironmental response to realize the self-assembly of Au&Fe-miRNA complexes for precise real-time imaging of tumor cells and targeted therapy. To accurately measure the changes in reactive oxygen species during complex formation in real time at the single-cell level, we employed small-size nanoscale devices as analytical tools. This study proposes an electrochemical sensor based on carbon fiber electrodes for ultraprecise and multiple monitoring of metal-ion-mediated miRNA delivery systems, precisely realizing targeted tracking of tumors and effective intervention inhibition.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Ke Huang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Zhaojian Qin
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Jiayu Zeng
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Ying Zhang
- School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, China
| | - Lihong Yin
- School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
10
|
Liu YL, Zhao YX, Li YB, Ye ZY, Zhang JJ, Zhou Y, Gao TY, Li F. Recent Advances of Nanoelectrodes for Single-Cell Electroanalysis: From Extracellular, Intercellular to Intracellular. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Abstract
Conductive nanopipettes have been widely used as a multifunctional platform for emerging sensing applications in small spaces, although the electrochemical processes involved are not well controlled and fully quantified. Herein, we use an external pressure to precisely control the solution volume and regulate the electrochemical signals in carbon nanopipettes. In addition to polarizing the redox concentration profile, the pressure is found to generate a convective flow to control the transport processes of redox molecules and nanoparticles as well, and their quantitative correlation is established by a numerical simulation. The elucidated pressure-regulated electrochemistry in conductive nanopipettes would reveal the fundamental charge transport processes at the nanoscale and promote better usage of conductive nanopipettes for delivery and sensing applications in single-cell analysis.
Collapse
Affiliation(s)
- Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Zhang Y, Liyana Arachchige D, Olowolagba A, Luck RL, Liu H. Near-infrared Fluorescent Probe Based on Rhodamine Derivative for Detection of NADH in Live Cells. Methods 2022; 204:22-28. [PMID: 35381337 PMCID: PMC9233151 DOI: 10.1016/j.ymeth.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
A near-infrared fluorescent probe was prepared for selective detection of reduced nicotinamide adenine dinucleotide (NADH) in live cells. The probe turns off the fluorescence with a closed spironolactone switch. However, reduction of the probe by NADH turns on fluorescence at 740 nm. Theoretical calculations suggest a more planar arrangement between the rhodamine and quinoline moieties with increased π-delocalization resulting from reduction.
Collapse
|
13
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Yan J, Qin Y, Fan WT, Wu WT, Lv SW, Yan LP, Liu YL, Huang WH. Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chem Sci 2021; 12:14432-14440. [PMID: 34880994 PMCID: PMC8580016 DOI: 10.1039/d1sc04138j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, stretchable electrochemical sensors have stood out as a powerful tool for the detection of soft cells and tissues, since they could perfectly comply with the deformation of living organisms and synchronously monitor mechanically evoked biomolecule release. However, existing strategies for the fabrication of stretchable electrochemical sensors still face with huge challenges due to scarce electrode materials, demanding processing techniques and great complexity in further functionalization. Herein, we report a novel and facile strategy for one-step preparation of stretchable electrochemical biosensors by doping ionic liquid and catalyst into a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS). Bis(trifluoromethane) sulfonimide lithium salt as a small-molecule plasticizer can significantly improve the stretchability and conductivity of the PEDOT:PSS film, and cobalt phthalocyanine as an electrocatalyst endows the film with excellent electrochemical sensing performance. Moreover, the functionalized PEDOT:PSS retained good cell biocompatibility with two extra dopants. These satisfactory properties allowed the real-time monitoring of stretch-induced transient hydrogen peroxide release from cells. This work presents a versatile strategy to fabricate conductive polymer-based stretchable electrodes with easy processing and excellent performance, which benefits the in-depth exploration of sophisticated life activities by electrochemical sensing.
Collapse
Affiliation(s)
- Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Song-Wei Lv
- School of Pharmacy, Changzhou University Changzhou 213164 China
| | - Li-Ping Yan
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
15
|
Wu W, Jiang H, Qi Y, Fan W, Yan J, Liu Y, Huang W. Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen‐Tao Wu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Qi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Jing Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
16
|
Zhang C, Guo X, Da X, Wang Z, Wang X, Zhou Q. A Ru-anthraquinone dyad with triple functions of PACT, photoredox catalysis and PDT upon red light irradiation. Dalton Trans 2021; 50:10845-10852. [PMID: 34296720 DOI: 10.1039/d1dt01088c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phototherapy for cancer treatment has received much attention in recent years, and compounds with multiple anticancer mechanisms upon irradiation are particularly appealing. In this work, a nitro-anthraquinone group was attached to a biq (2,2'-biquinoline) ligand based Ru(ii) complex, endowing the resultant Ru1 compound with multiple anticancer mechanisms upon 600 nm light irradiation. Ru1 can undergo biq ligand photodissociation, showing its potential as a photoactivated chemotherapy (PACT) agent. Moreover, a Ru(iii) centre and an anthraquinone anion centre may be generated upon irradiation, which can further oxidize NADH/NADPH and generate O2˙-, successfully eliciting photoredox catalysis and photodynamic therapy (PDT). Compared to the control complex Ru2 without the nitroanthraquinone group, Ru1 exhibited much enhanced photocytotoxicity towards a series of cancer cell lines and 3D multicellular spheroids upon red light irradiation.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xusheng Guo
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuwen Da
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhanhua Wang
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuesong Wang
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianxiong Zhou
- Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
17
|
Wu WT, Jiang H, Qi YT, Fan WT, Yan J, Liu YL, Huang WH. Large-Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing. Angew Chem Int Ed Engl 2021; 60:19337-19343. [PMID: 34121300 DOI: 10.1002/anie.202106251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Indexed: 01/15/2023]
Abstract
A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
18
|
Zhou L, Kasai N, Nakajima H, Kato S, Mao S, Uchiyama K. In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe. Anal Chem 2021; 93:8680-8686. [PMID: 34107213 DOI: 10.1021/acs.analchem.1c01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolism of a single cell, even within the same organization, differs from other cells by orders of magnitude. Single-cell analysis provides key information for early diagnosis of cancer as well as drug screening. Any slight change in the microenvironment may affect the state of a single cell. Timely and effective cell monitoring is conducive to better understand the behavior of single cells. The immediate response of a single cell described in this study is a liquid transfer-based approach for real-time electrochemical detection. The cell was in situ stimulated by continuous flow with glucose, and lactate secreted from the cell would diffuse into the microflow. The microflow was aspirated into the detection channel where lactate was then decomposed by coupled enzyme reactions and detected by an electrode. This work provides a novel approach for detecting lactate response from a single cell by noninvasive measurements, and the position resolution of the microfluidic probe reaches the level of a single cell and permits individual heterogeneity in cells to be explored in the diagnosis and treatment of cancer as well as in many other situations.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Nahoko Kasai
- University Education Center, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Shungo Kato
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi 192-0397, Tokyo, Japan
| |
Collapse
|
19
|
Zhang J, Liu Z, Tian F, Chen Y. A novel ratiometric fluorescent probe from a hemicyanine derivative for detecting NAD(P)H in a cell microenvironment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1681-1686. [PMID: 33861234 DOI: 10.1039/d1ay00002k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a fluorescent compound derived from coumarin and hemicyanine was synthesized and characterized. Herein, we present the fluorescence properties of the probe. Fluorescence selectivity experiments revealed that it exhibited higher ratiometric fluorescence response activity toward NAD(P)H than other commonly coexisting compounds in the cell microenvironment, in accord with the fluorescence shift from red to blue. In addition, the fluorescence identification mechanism was deduced to be a redox reaction between the sensor and NAD(P)H according to the fluorescence behavior. The ratiometric fluorescent probe provided an important theoretical basis for sensing NAD(P)H in vitro and in vivo. We also used this phenomenon to build a sensitive detection platform of NAD(P)H-dependent enzyme activity based on the fluorescence method.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Zhengzhou University, Zhoukou 466001, P. R. China
| | | | | | | |
Collapse
|
20
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
21
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
22
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|