Ultralow contact resistance in organic transistors via orbital hybridization.
Nat Commun 2023;
14:324. [PMID:
36658167 PMCID:
PMC9852566 DOI:
10.1038/s41467-023-36006-0]
[Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Organic field-effect transistors (OFETs) are of interest in unconventional form of electronics. However, high-performance OFETs are currently contact-limited, which represent a major challenge toward operation in the gigahertz regime. Here, we realize ultralow total contact resistance (Rc) down to 14.0 Ω ∙ cm in C10-DNTT OFETs by using transferred platinum (Pt) as contact. We observe evidence of Pt-catalyzed dehydrogenation of side alkyl chains which effectively reduces the metal-semiconductor van der Waals gap and promotes orbital hybridization. We report the ultrahigh performance OFETs, including hole mobility of 18 cm2 V-1 s-1, saturation current of 28.8 μA/μm, subthreshold swing of 60 mV/dec, and intrinsic cutoff frequency of 0.36 GHz. We further develop resist-free transfer and patterning strategies to fabricate large-area OFET arrays, showing 100% yield and excellent variability in the transistor metrics. As alkyl chains widely exist in conjugated molecules and polymers, our strategy can potentially enhance the performance of a broad range of organic optoelectronic devices.
Collapse