1
|
Choi J, Thirupathi A, Kim J, Ha HJ, Ahn KH, Kang EJ. Fe(II)-Iminopyridine Catalyst for the Regioselective Synthesis of Oxazolidinones Using Carbon Dioxide. J Org Chem 2024; 89:18081-18089. [PMID: 39630108 DOI: 10.1021/acs.joc.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study presents the application of a novel Fe-iminopyridine catalyst for the regioselective synthesis of oxazolidinones from carbon dioxide and aziridines. Our findings demonstrate that the Fe-iminopyridine catalyst containing imidazole functional group offers promising efficiency and facilitates a sustainable approach to green chemical synthesis at 50 °C and 10 bar CO2 pressure in a single-component Fe catalyst system. Various aziridines with carboxylic acid-derived substituents were transformed into 5-carbonyl substituted oxazolidinone products. The regioselective synthesis of oxazolidinones followed by the reduction enhances their utility for the pharmaceutically valuable compounds.
Collapse
Affiliation(s)
- Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Annaram Thirupathi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihoon Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
2
|
Chen P, Zhang MM, Rao L, Li YH, Jia Y, Tan Y, Xiao WJ, Lu LQ. Access to N-α-quaternary chiral morpholines via Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy. Sci Bull (Beijing) 2024; 69:3516-3524. [PMID: 39183108 DOI: 10.1016/j.scib.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91% yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.
Collapse
Affiliation(s)
- Peng Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mao-Mao Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan-Heng Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yue Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Chan AHY, Ho TCS, Leeper FJ. Thiamine analogues featuring amino-oxetanes as potent and selective inhibitors of pyruvate dehydrogenase. Bioorg Med Chem Lett 2024; 98:129571. [PMID: 38036274 DOI: 10.1016/j.bmcl.2023.129571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Pyruvate dehydrogenase complex (PDHc) is suppressed in some cancer types but overexpressed in others. To understand its contrasting oncogenic roles, there is a need for selective PDHc inhibitors. Its E1-subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme and catalyses the first and rate-limiting step of the complex. In a recent study, we reported a series of ester-based thiamine analogues as selective TPP-competitive PDH E1 inhibitors with low nanomolar affinity. However, when the ester linker was replaced with an amide for stability reasons, the binding affinity was significantly reduced. In this study, we show that an amino-oxetane bioisostere of the amide improves the affinity and maintains stability towards esterase-catalysed hydrolysis.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
4
|
Li Z, Zhao L, Zhang Y, Yan H, Huang X, Shen G. Cascade Nucleophilic Attack/Addition Cyclization Reactions to Synthesize Oxazolidin-2-imines via ( Z)-2-Bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and Diphenyl Carbodiimides. J Org Chem 2022; 87:12721-12732. [PMID: 36099272 DOI: 10.1021/acs.joc.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two concise strategies to synthesize oxazolidin-2-imines by cascade nucleophilic attack/addition cyclization reactions of (Z)-2-bromo-3-phenylprop-2-en-1-ols/3-phenylprop-2-yn-1-ols and diphenyl carbodiimides without a transition-metal catalyst have been developed. The reactions exhibited good substrate applicability tolerance, and a variety of substituted (Z)-4-((Z)-benzylidene)-N,3-diphenyloxazolidin-2-imines were synthesized in moderate to excellent yields with good stereoselectivity. The reports also provided a convenient strategy to synthesize 3-phenylprop-2-yn-1-ols by (Z)-2-bromo-3-phenylprop-2-en-1-ols. The economic and practical methods provide a great advantage for potential industrial synthesis of oxazolidin-2-imines.
Collapse
Affiliation(s)
- Zhanjun Li
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Lingyu Zhao
- Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Hui Yan
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Avenue, Liaocheng, Shandong 252000, P. R. China.,Chemistry and Chemical Engineering, Jinan University, 106 Jiwei Road, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
5
|
Tang L, Zang Y, Guo W, Han Z, Huang H, Sun J. Reductive Opening of Oxetanes Catalyzed by Frustrated Lewis Pairs: Unexpected Aryl Migration via Neighboring Group Participation. Org Lett 2022; 24:3259-3264. [PMID: 35467358 DOI: 10.1021/acs.orglett.2c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B(C6F5)3 was found to catalyze an unusual double reduction of oxetanes by hydrosilane with aryl migration via neighboring group participation. Control experiments suggested that the phenonium ion serves as the key intermediate. Minor modification of this protocol also led to simple hydrosilylative opening of oxetanes.
Collapse
Affiliation(s)
- Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Zang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing First Road, Shenzhen 518057, China
| |
Collapse
|
6
|
Martínez JP, Trzaskowski B. Structural and Electronic Properties of Boranes Containing Boron‐Chalcogen Multiple Bonds and Stabilized by Amido Imidazoline‐2‐imine Ligands. Chemistry 2022; 28:e202103997. [DOI: 10.1002/chem.202103997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/09/2022]
|
7
|
Qiu W, Jin F, Hao Y, Bao X, Yuan D, Yao Y. Amine-catalyzed site- and stereo-selective coupling of epoxy amines and carbon dioxide to construct oxazolidinones. Org Chem Front 2022. [DOI: 10.1039/d2qo00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NEt3 catalyzed the cycloaddition of epoxy amine and CO2, which generated oxazolidinones. Reactions of chiral epoxy amine achieved 100% configuration inversion, enabling the synthesis of linezolid. DFT studies show that NEt3 acted as a nucleophile.
Collapse
Affiliation(s)
- Wenqin Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Bhosale VA, Nigríni M, Dračínský M, Císařová I, Veselý J. Enantioselective Desymmetrization of 3-Substituted Oxetanes: An Efficient Access to Chiral 3,4-Dihydro-2 H-1,4-benzoxazines. Org Lett 2021; 23:9376-9381. [PMID: 34817183 DOI: 10.1021/acs.orglett.1c03419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a versatile transition metal/oxidant free synthesis of the chiral 2H-1,4-benzoxazines through chiral phosphoric acid (CPA) catalyzed enantioselective desymmetrization of prochiral oxetanes (30 examples) in up to 99% yield and 99% enantioselectivity under mild reaction conditions. The reported strategy not only complements the conventional 2H-1,4-benzoxazine synthetic strategies but also provides access to key intermediates of therapeutic candidates, i.e., prostaglandin D2 receptor antagonist and M1 positive allosteric modulator (PAM) compound VU0486846.
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Nigríni
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| |
Collapse
|
9
|
Hu FP, Zhang XG, Wang M, Wang HS, Huang GS. Synthesis of oxazolidinones through ring-opening and annulation of vinylene carbonate with 2-pyrrolyl/indolylanilines under Rh(III) catalysis. Chem Commun (Camb) 2021; 57:11980-11983. [PMID: 34709263 DOI: 10.1039/d1cc05059a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we have developed a rhodium-catalyzed C-H functionalization and subsequent intramolecular ring-opening/cyclization of vinylene carbonate with 2-pyrrolyl/indolylanilines, which leads to oxazolidinones in moderate to good yields. In this transformation, vinylene carbonate only eliminates one oxygen atom rather than -CO3 or CO2. Furthermore, some control experiments are conducted to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Fang-Peng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Xue-Guo Zhang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Meng Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - He-Song Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Guo-Sheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Sandvoß A, Wiest JM. Recent Advances in Enantioselective Desymmetrizations of Prochiral Oxetanes. Chemistry 2021; 27:5871-5879. [PMID: 33274788 PMCID: PMC8049043 DOI: 10.1002/chem.202004923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Strain relief of oxetanes offers a plethora of opportunities for the synthesis of chiral alcohols and ethers. In this context, enantioselective desymmetrization has been identified as a powerful tool to construct molecular complexity and this has led to the development of elegant strategies on the basis of transition metal, Lewis acid, and Brønsted acid catalysis. This review highlights recent examples that harness the inherent reactivity of prochiral oxetanes and offers an outlook on the immense possibilities for synthetic application.
Collapse
Affiliation(s)
- Alexander Sandvoß
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Johannes M. Wiest
- Department ChemieJohannes Gutenberg Universität MainzDuesbergweg 10–1455128MainzGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
11
|
Zhang J, Li YF, Jia FC, Gao Y, Hu XQ. Strain-release enabled [3 + 2] annulation of 3-aminooxetanes with simple CN bonds: facile synthesis of imidazolidines. Org Chem Front 2021. [DOI: 10.1039/d1qo01164b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented [3+2] annulation of readily available 1,3,5-triazinanes and 3-aminooxetanes is accomplished for the first time, enabling the convenient synthesis of a range of structurally diverse 4-hydroxymethyl imidazolidines.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yi-Fei Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
12
|
Limburg B, Cristòfol À, Della Monica F, Kleij AW. Unlocking the Potential of Substrate-Directed CO 2 Activation and Conversion: Pushing the Boundaries of Catalytic Cyclic Carbonate and Carbamate Formation. CHEMSUSCHEM 2020; 13:6056-6065. [PMID: 33022846 DOI: 10.1002/cssc.202002246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO2 coupling strategies. This conceptually new approach allows for a substantial extension of the substitution degree and functionality of cyclic carbonate/carbamate products, which are predominant products in the area of nonreductive CO2 transformations. Apart from the creation of an advanced library of CO2 -based heterocyclic products and intermediates, also the underlying mechanistic reasons for this novel reactivity profile are debated with a prominent role for the design and structure of the involved catalysts.
Collapse
Affiliation(s)
- Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|