1
|
Hettich C, Zhang X, Kemper D, Zhao R, Zhou S, Lu Y, Gao J, Zhang J, Liu M. Multistate Energy Decomposition Analysis of Molecular Excited States. JACS AU 2023; 3:1800-1819. [PMID: 37502166 PMCID: PMC10369419 DOI: 10.1021/jacsau.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/29/2023]
Abstract
A multistate energy decomposition analysis (MS-EDA) method is described to dissect the energy components in molecular complexes in excited states. In MS-EDA, the total binding energy of an excimer or an exciplex is partitioned into a ground-state term, called local interaction energy, and excited-state contributions that include exciton excitation energy, superexchange stabilization, and orbital and configuration-state delocalization. An important feature of MS-EDA is that key intermediate states associated with different energy terms can be variationally optimized, providing quantitative insights into widely used physical concepts such as exciton delocalization and superexchange charge-transfer effects in excited states. By introducing structure-weighted adiabatic excitation energy as the minimum photoexcitation energy needed to produce an excited-state complex, the binding energy of an exciplex and excimer can be defined. On the basis of the nature of intermolecular forces through MS-EDA analysis, it was found that molecular complexes in the excited states can be classified into three main categories, including (1) encounter excited-state complex, (2) charge-transfer exciplex, and (3) intimate excimer or exciplex. The illustrative examples in this Perspective highlight the interplay of local excitation polarization, exciton resonance, and superexchange effects in molecular excited states. It is hoped that MS-EDA can be a useful tool for understanding photochemical and photobiological processes.
Collapse
Affiliation(s)
- Christian
P. Hettich
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaoyong Zhang
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - David Kemper
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruoqi Zhao
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Shaoyuan Zhou
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yangyi Lu
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Jiali Gao
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Meiyi Liu
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Abstract
A multistate energy decomposition analysis (MS-EDA) method is introduced for excimers using density functional theory. Although EDA has been widely applied to intermolecular interactions in the ground state, few methods are currently available for excited-state complexes. Here, the total energy of an excimer state is separated into exciton excitation energy ΔEEx(|ΨX·ΨY⟩*), resulting from the state interaction between locally excited monomer states |ΨX*·ΨY⟩ and |ΨX·ΨY*⟩ , a superexchange stabilization energy ΔESE, originating from the mutual charge transfer between two monomers |ΨX+·ΨY⟩ and |ΨX-·ΨY+⟩ , and an orbital-and-configuration delocalization term ΔEOCD due to the expansion of configuration space and block-localized orbitals to the fully delocalized dimer system. Although there is no net charge transfer in symmetric excimer cases, the resonance of charge-transfer states is critical to stabilizing the excimer. The monomer localized excited and charge-transfer states are variationally optimized, forming a minimal active space for nonorthogonal state interaction (NOSI) calculations in multistate density functional theory to yield the intermediate states for energy analysis. The present MS-EDA method focuses on properties unique to excited states, providing insights into exciton coupling, superexchange and delocalization energies. MS-EDA is illustrated on the acetone and pentacene excimer systems; three configurations of the latter case are examined, including the optimized excimer, a stacked configuration of two pentacene molecules and the fishbone orientation. It is found that excited-state energy splitting is strongly dependent on the relative energies of the monomer excited states and the phase-matching of the monomer wave functions.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Theoretical and Computational Chemistry, Jilin University, Changchun, Jilin 130023, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Christian Hettich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Meiyi Liu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|