1
|
Hanumanthu R, Sharma P, Ethridge A, Weaver JD. Co-Catalytic Coupling of Alkyl Halides and Alkenes: the Curious Role of Lutidine. J Am Chem Soc 2025; 147:5238-5246. [PMID: 39895054 PMCID: PMC11827002 DOI: 10.1021/jacs.4c15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Continuous pressure to shorten synthetic sequences along with the concomitant expansion of scope makes the use of alkyl bromides, chlorides, and oxygen based leaving groups- which are abundant and readily available feedstocks, highly attractive for C-C bond synthesis. However, selective activation of these bonds to generate radical intermediates remains challenging and is generally unfeasible using traditional activation strategies. Herein, we report a dual catalytic activation strategy to access primary, secondary, and tertiary alkyl radicals from respective alkyl chlorides and bromides, as well as primary tosylates and trifluoroacetates. While the method relies on visible light and a photocatalyst to facilitate electron transfer, based on reduction potentials, the substrates are not expected to be reduceable, and yet they are reduced in the presence of lutidine. Ultimately, our investigation revealed that lutidine was a precatalyst and ultimately led to the use of lutidinium iodide salt which served as a critical cocatalyst that resulted in improved reaction profiles. Our studies revealed two critical roles that lutidinium iodide salts play which made it possible to engage otherwise unreactive substrates: nucleophilic exchange and halogen atom transfer by the lutidinium radical. In short, this work converts unactivated alkyl chlorides, bromides, tosylates, and trifluoroacetates to radicals that can be used for C-C bond formation without the need for preactivation─effectively expediting synthesis.
Collapse
Affiliation(s)
| | | | - Avery Ethridge
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jimmie D. Weaver
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
2
|
Toigo J, Tong KM, Farhat R, Kamal S, Nichols EM, Wolf MO. Rationalizing Photophysics of Co(III) Complexes with Pendant Pyrene Moieties. Inorg Chem 2025; 64:835-844. [PMID: 39788568 DOI: 10.1021/acs.inorgchem.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, CoL1, where L1 = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium). CoL1 displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with CoL0 [L0 = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium)] in which the pyrene moiety is absent. Emissive properties are highly influenced by the metal center, reducing the fluorescence lifetime from 5.9 to 3.5 ns, and a blue shift of 43 nm. The lower energy of the d orbitals in Co(III) compared with Fe(II) drastically affects the character of the excited state, resulting in a mixture of singlet intraligand charge-transfer (1ILCT) and ligand-to-metal charge-transfer (1LMCT) character. Transient absorption experiments revealed that although the dark triplet intraligand pyrene (3ILPyrene) state is present, it is not efficiently populated and possesses a short nanosecond-scale lifetime. Instead, triplet metal-centered (3MC) states dominate the decay path with a 2.4 ps lifetime, no photoactivity toward singlet oxygen formation or triplet-triplet energy transfer (TTET). This work shows how various factors can influence excited-state dynamics.
Collapse
Affiliation(s)
- Jessica Toigo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ka-Ming Tong
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Rida Farhat
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Devi K, Shehzad A, Wiesenfeldt MP. Organophotocatalytic Reduction of Benzenes to Cyclohexenes. J Am Chem Soc 2024; 146:34304-34310. [PMID: 39629986 DOI: 10.1021/jacs.4c14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The reduction of abundant benzene rings to scarce C(sp3)-rich motifs is invaluable for drug design, as C(sp3) content is known to correlate with clinical success. Cyclohexenes are attractive targets, as they can be rapidly elaborated into large product libraries and are stable against rearomatization. However, partial reduction reactions of benzenes to cyclohexenes are rare and have a very narrow scope. Herein we report a broadly applicable method that converts electron-poor benzenes to cyclohexenes and tolerates Lewis-basic functional groups such as triazoles and thioethers as well as reducible groups such as cyanides, alkynes, and sulfones. The reaction utilizes an organic donor that induces mild arene reduction by preassociation to a photoexcitable electron donor-acceptor (EDA) complex and mild isomerization of redox-inert 1,4-cyclohexadienes to reducible 1,3-cyclohexadienes without a strong base in its oxidized thioquinone methide form.
Collapse
Affiliation(s)
- Kirti Devi
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Asad Shehzad
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Mario P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Kumar A, Kim D, Nguyen G, Jiang C, Chakraborty S, Teets TS. Photophysical properties of three-coordinate heteroleptic Cu(I) β-diketiminate triarylphosphine complexes. Dalton Trans 2024; 54:396-404. [PMID: 39552323 DOI: 10.1039/d4dt02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A series of heteroleptic copper(I) β-diketiminate triarylphosphine complexes is reported, having the general formula Cu(R1NacNacR2)(PPhX3), where R1NacNacR2 is a substituted β-diketiminate and PPhX3 is a triphenylphosphine derivative. A total of five different R1NacNacR2 ligands and three different triarylphosphines are used to assemble the nine complexes. The syntheses, X-ray crystal structures, cyclic voltammograms, and UV-vis absorption spectra of all compounds are described. Whereas most of the compounds are weakly luminescent or only luminesce at 77 K, the four complexes with the more sterically encumbered β-diketiminate ligands, with methyl or isopropyl substituents at the 2- and 6-positions of the N-phenyl rings, exhibit weak room-temperature photoluminescence with peaks between 519 and 566 nm and long excited-state lifetimes in the range of 15-70 μs. The sterically encumbering substituents in this subset have subtle effects on the UV-vis absorption maximum, which red shifts slightly as the steric bulk increases, as well as significant effects on the photoluminescence lifetime, which is observed to increase as the steric bulk is augmented. Substituents on the triarylphosphine also influence the excited-state dynamics in the bulky complexes, with the more electron-rich tris(4-methoxyphenyl)phosphine (PPhOMe3) giving longer-excited-state lifetimes compared to triphenylphosphine (PPh3) when the same R1NacNacR2 ligand is used.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Giao Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Soumi Chakraborty
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
5
|
Srinivasu V, Pattanaik S, Sureshkumar D. Photoredox cross-dehydrogenative C(sp 2)-C(sp 3) coupling of heteroarenes with secondary amines through 1,5-HAT. Chem Commun (Camb) 2024; 60:9757-9760. [PMID: 39150701 DOI: 10.1039/d4cc02818j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The functionalization of α-C(sp3)-H bonds in amines has become a focal point of contemporary research. Here, we report a new approach utilizing photocatalysis α-C(sp3)-H bond functionalization in alicyclic and aliphatic secondary amines facilitated by intramolecular 1,5-hydrogen atom transfer (HAT). This finding unlocks a sustainable method for rapidly constructing complex heterocyclics via cross-dehydrogenative C-C coupling of protected amines and nitrogen-containing heterocycles. This protocol boasts broad applicability to various substrates, exhibits tolerance to numerous functional groups, and supports the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Swadhin Pattanaik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur-760010, Odisha, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
6
|
Kim D, Teets TS. Sterically Encumbered Aryl Isocyanides Extend Excited-State Lifetimes and Improve the Photocatalytic Performance of Three-Coordinate Copper(I) β-Diketiminate Charge-Transfer Chromophores. J Am Chem Soc 2024. [PMID: 38853542 DOI: 10.1021/jacs.4c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper(I) complexes are prominent candidates to replace noble metal-based photosensitizers. We recently introduced a three-coordinate design for copper(I) charge-transfer chromophores that pair β-diketiminate ligands with aryl isocyanides. The excited-state lifetime in these compounds can be extended using a bichromophoric "triplet reservoir" strategy, which comes at the expense of a decrease in excited-state energy and reducing power. In this work, we introduce a complementary, sterically driven strategy for increasing the excited-state lifetimes of these photosensitizers, which gives a higher-energy, more strongly reducing charge-transfer triplet state than does the bichromophore approach. The compounds presented (Cu1-Cu4) have the general formula Cu(CyNacNacMe)(CN-Ar), where CyNacNacMe is a cyclohexyl-substituted β-diketiminate and CN-Ar is an aryl isocyanide with a variable steric profile. Their structural features and electrochemical and photophysical properties are described. The complexes with sterically encumbered 2,6-diisopropylphenyl or m-terphenyl isocyanide ligands (Cu2-Cu4) exhibit prolonged excited-state lifetimes relative to those of the parent 2,6-dimethylphenyl isocyanide compound Cu1. Specifically, one of the m-terphenyl isocyanide compounds, Cu3, displays an excited-state lifetime of 276 ns, approximately 30 times longer than that of Cu1 (9.3 ns). The photoluminescence quantum yield of Cu3 (0.09) also increases by two orders of magnitude compared to that of Cu1 (0.0008). The strong excited-state reducing power (*Eox = -2.4 V vs Fc+/0) and long lifetime of Cu3 lead to higher yields in photoredox and photocatalytic isomerization reactions, which include dehalogenation and/or hydrodgenation of benzophenone substrates, C-O bond activation of a lignin model substrate, and photocatalytic E/Z isomerization of stilbene.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
8
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
10
|
Sinha N, Wegeberg C, Häussinger D, Prescimone A, Wenger OS. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat Chem 2023; 15:1730-1736. [PMID: 37580444 PMCID: PMC10695827 DOI: 10.1038/s41557-023-01297-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
Coordination complexes of precious metals with the d6 valence electron configuration such as Ru(II), Os(II) and Ir(III) are used for lighting applications, solar energy conversion and photocatalysis. Until now, d6 complexes made from abundant first-row transition metals with competitive photophysical and photochemical properties have been elusive. While previous research efforts focused mostly on Fe(II), we disclose that isoelectronic Cr(0) gives access to higher photoluminescence quantum yields and excited-state lifetimes when compared with any other first-row d6 metal complex reported so far. The luminescence behaviour of the metal-to-ligand charge transfer excited states of these Cr(0) complexes is competitive with Os(II) polypyridines. With these Cr(0) complexes, the metal-to-ligand charge transfer states of first-row d6 metal complexes become exploitable in photoredox catalysis, and benchmark chemical reductions proceed efficiently under low-energy red illumination. Here we demonstrate that appropriate molecular design strategies open up new perspectives for photophysics and photochemistry with abundant first-row d6 metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | | | | | - Oliver S Wenger
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Yang S, Hu H, Chen M. Photoinduced Palladium-Catalyzed Regio- and Chemoselective Elimination of Primary Alkyl Bromides: A Mild Route to Synthesize Unactivated Terminal Olefins. Org Lett 2023; 25:7968-7973. [PMID: 37888796 DOI: 10.1021/acs.orglett.3c02980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Presented is a highly efficient method for visible-light-induced regio- and chemoselective elimination of alkyl halides yielding unactivated terminal olefins vital in organic synthesis. Achieved through ligand control, the reaction exhibits remarkable regioselectivity and suppresses undesired side reactions, particularly 1,5-hydrogen atom transfer (HAT). The process favors primary alkyl halides while preserving secondary and tertiary alkyl bromides, thereby enabling the incorporation of terminal olefins in complex molecules for late-stage functionalization.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
12
|
Kim D, Rosko MC, Dang VQ, Castellano FN, Teets TS. Sterically Encumbered Heteroleptic Copper(I) β-Diketiminate Complexes with Extended Excited-State Lifetimes. Inorg Chem 2023; 62:16759-16769. [PMID: 37782937 DOI: 10.1021/acs.inorgchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
One of the main challenges in developing effective copper(I) photosensitizers is their short excited-state lifetimes, usually attributed to structural distortion upon light excitation. We have previously introduced copper(I) charge-transfer chromophores of the general formula Cu(N^N)(ArNacNac), where N^N is a conjugated diimine ligand and ArNacNac is a substituted β-diketiminate ligand. These chromophores were promising regarding their tunable redox potentials and intense visible absorption but were ineffective as photosensitizers, presumably due to short excited-state lifetimes. Here, we introduce sterically crowded analogues of these heteroleptic chromophores with bulky alkyl substituents on the N^N and/or ArNacNac ligand. Structural analysis was combined with electrochemical and photophysical characterization, including ultrafast transient absorption (UFTA) spectroscopy to investigate the effects of the alkyl groups on the excited-state lifetimes of the complexes. The molecular structures determined by single-crystal X-ray diffraction display more distortion in the ground state as alkyl substituents are introduced into the phenanthroline or the NacNac ligand, showing smaller τ4 values due to the steric hindrance. UFTA measurements were carried out to determine the excited-state dynamics. Sterically encumbered Cu5 and Cu6 display excited-state lifetimes 15-20 times longer than unsubstituted complex Cu1, likely indicating that the incorporation of bulky alkyl substituents inhibits the pseudo-Jahn-Teller (PJT) flattening distortion in the excited state. This work suggests that the steric properties of these heteroleptic copper(I) charge-transfer chromophores can be readily modified and that the excited-state dynamics are strongly responsive to these modifications.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
13
|
Das P, DeSpain M, Ethridge A, Weaver JD. Exploiting Visible Light Triggered Formation of trans-Cyclohexene for the Contra-thermodynamic Protection of Alcohols. Org Lett 2023; 25:7316-7321. [PMID: 37773592 DOI: 10.1021/acs.orglett.3c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
We report herein a method for the contra-thermodynamic protection and thermodynamic deprotection of alcohols in which all reagents are returned to their original state. This is accomplished by the use of visible light photochemical energy to drive the formation of a highly strained trans-(Z)-cyclohexene. At STP the product ethers contain more potential energy than the starting materials and, thus, can be catalytically returned to the starting materials, effectively realizing a protection-deprotection scheme paid for with an energy currency.
Collapse
Affiliation(s)
- Pritha Das
- 107 Physical Science, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Megan DeSpain
- 107 Physical Science, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Avery Ethridge
- 107 Physical Science, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jimmie D Weaver
- 107 Physical Science, Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
14
|
Zhu Y, Wu Z, Sun H, Ding J. Photo-Induced, Phenylhydrazine-Promoted Transition-Metal-Free Dehalogenation of Aryl Fluorides, Chlorides, Bromides, and Iodides. Molecules 2023; 28:6915. [PMID: 37836758 PMCID: PMC10574415 DOI: 10.3390/molecules28196915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, we present a straightforward and highly effective photo-triggered hydrogenation method for aryl halides, devoid of transition-metal catalysts. Through the synergistic utilization of light, PhNHNH2, and a base, we have successfully initiated the desired radical-mediated hydrogenation process. Remarkably, utilizing mild reaction conditions, a wide range of aryl halides, including fluorides, chlorides, bromides, and iodides, can be selectively transformed into their corresponding (hetero)arene counterparts, with exceptional yields. Additionally, this approach demonstrates a remarkable compatibility with diverse functional groups and heterocyclic compounds, highlighting its versatility and potential for use in various chemical transformations.
Collapse
Affiliation(s)
- Yiwei Zhu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China (J.D.)
| | | | | | | |
Collapse
|
15
|
Dang VQ, Teets TS. Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers. Chem Sci 2023; 14:9526-9532. [PMID: 37712019 PMCID: PMC10498680 DOI: 10.1039/d3sc03000h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C-C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped.
Collapse
Affiliation(s)
- Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
16
|
Yoon S, Gray TG, Teets TS. Enhanced Deep-Red Phosphorescence in Cyclometalated Iridium Complexes with Quinoline-Based Ancillary Ligands. Inorg Chem 2023; 62:7898-7905. [PMID: 37167020 DOI: 10.1021/acs.inorgchem.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Compounds with good photoluminescence quantum yields (ΦPL) in the deep-red to near-infrared parts of the spectrum are desired for a variety of applications in optoelectronics, imaging, and sensing. However, in this region of the spectrum, quantum yields are usually modest, which is explained by the energy gap law and the inherently slower radiative decay rates for low-energy emitters according to the second-order perturbation theory. In this work, we outline a new direction in deep-red luminescence, introducing a new suite of bis-cyclometalated iridium complexes with efficient luminescence beyond 650 nm. Seven new complexes are prepared using two different cyclometalating (C^N) ligands with four quinoline-derived ancillary ligands (L^X). The chosen cyclometalating ligands are well-established to produce deep-red phosphorescence and include a metalated phenyl ring appended to a conjugated heterocycle. The ancillary ligands combine a rigid quinoline or benzoquinoline "L" donor with a variable anionic "X" donor comprised of an O-donor aryloxy or carboxylate or an N-donor amidate. These complexes phosphoresce in the deep-red region with wavelengths between 650 and 700 nm and solution quantum yields between 0.018 and 0.42.
Collapse
Affiliation(s)
- Sungwon Yoon
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
17
|
Singh V, Singh R, Hazari AS, Adhikari D. Unexplored Facet of Pincer Ligands: Super-Reductant Behavior Applied to Transition-Metal-Free Catalysis. JACS AU 2023; 3:1213-1220. [PMID: 37124293 PMCID: PMC10131200 DOI: 10.1021/jacsau.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Pincer ligands are well-established supporting ancillaries to afford robust coordination to metals across the periodic table. Despite their widespread use in developing homogeneous catalysts, the redox noninnocence of the ligand backbone is less utilized in steering catalytic transformations. This report showcases a trianionic, symmetric NNN-pincer to drive C-C cross-coupling reactions and heterocycle formation via C-H functionalization, without any coordination to transition metals. The starting substrates are aryl chlorides that can tease the limit of a catalyst's ability to promote a reductive cleavage at a much demanding potential of -2.90 V vs SCE. The reducing power of the simple trianionic ligand backbone has been tremendously amplified by shining visible light on it. The catalyst's success relies on its easy access to the one-electron oxidized iminosemiquinonate form that has been thoroughly characterized by X-band electron paramagnetic resonance spectroscopy through spectroelectrochemical experiments. The moderately long-lived excited-state lifetime (10.2 ns) and such a super-reductive ability dependent on the one-electron redox shuttle between the bisamido and iminosemiquinonato forms make this catalysis effective.
Collapse
Affiliation(s)
- Vikramjeet Singh
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| | - Rahul Singh
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| | | | - Debashis Adhikari
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
18
|
Glykos D, Plakatouras JC, Malandrinos G. Bis(2-phenylpyridinato,-C2′,N)[4,4′-bis(4-Fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine] Iridium(III) Hexafluorophosphate. MOLBANK 2023. [DOI: 10.3390/m1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
A new bis cyclometallated Ir(III) phosphor, [Ir(ppy)2L]PF6 (ppy = 2-phenylpyridine, L = 4,4′-bis(4-fluorophenyl)-6,6′-dimethyl-2,2′-bipyridine was prepared and structurally characterized in the solid state (X-ray diffraction) and solution (1 and 2D NMR spectroscopy). The compound exhibited yellow photoluminescence (λem = 562 nm). The quantum yield Φ was solvent-dependent (5% in acetonitrile and 19% in dichloromethane solutions, respectively).
Collapse
|
19
|
Xie W, Xu J, Md Idros U, Katsuhira J, Fuki M, Hayashi M, Yamanaka M, Kobori Y, Matsubara R. Metal-free reduction of CO 2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat Chem 2023:10.1038/s41557-023-01157-6. [PMID: 36959509 DOI: 10.1038/s41557-023-01157-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2023] [Indexed: 03/25/2023]
Abstract
Increasing levels of CO2 in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO2 into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO2RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO2RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H2 and CO).
Collapse
Affiliation(s)
- Weibin Xie
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jiasheng Xu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ubaidah Md Idros
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jouji Katsuhira
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masaaki Fuki
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Tokyo, Japan.
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan.
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
| |
Collapse
|
20
|
Schreier MR, Pfund B, Steffen DM, Wenger OS. Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorg Chem 2023; 62:7636-7643. [PMID: 36731131 DOI: 10.1021/acs.inorgchem.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine nucleotide (NADH) is involved in many biologically relevant redox reactions, and the photochemical regeneration of its oxidized form (NAD+) under physiological conditions is of interest for combined photo- and biocatalysis. Here, we demonstrate that tri-anionic, water-soluble variants of typically very lipophilic iridium(III) complexes can photo-catalyze the reduction of an NAD+ mimic in a comparatively efficient manner. In combination with a well-known rhodium co-catalyst to facilitate regioselective reactions, these iridium(III) photo-reductants outcompete the commonly used [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) photosensitizer in water by up to 1 order of magnitude in turnover frequency. This improved reactivity is attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III) sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water solubility can be essential.
Collapse
Affiliation(s)
- Mirjam R Schreier
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Debora M Steffen
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, Street Johanns-Ring 19, 4056 Basel, Switzerland.,National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
21
|
Mrózek O, Mitra M, Hupp B, Belyaev A, Lüdtke N, Wagner D, Wang C, Wenger OS, Marian CM, Steffen A. An Air- and Moisture-stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis. Chemistry 2023; 29:e202203980. [PMID: 36637038 DOI: 10.1002/chem.202203980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
A dimeric ZnII carbene complex featuring bridging and chelating benzene-1,2-dithiolate ligands is highly stable towards air and water. The donor-Zn-acceptor structure leads to visible light emission in the solid state, solution and polymer matrices with λmax between 577-657 nm and, for zinc(II) complexes, unusually high radiative rate constants for triplet exciton decay of up to kr =1.5×105 s-1 at room temperature. Variable temperature and DFT/MRCI studies show that a small energy gap between the 1/3 LL/LMCT states of only 79 meV is responsible for efficient thermally activated delayed fluorescence (TADF). Time-resolved luminescence and transient absorption studies confirm the occurrence of long-lived, dominantly ligand-to-ligand charge transfer excited states in solution, allowing for application in Dexter energy transfer photocatalysis.
Collapse
Affiliation(s)
- Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Mousree Mitra
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Bejamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Nora Lüdtke
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
22
|
Mahmood Z, He J, Cai S, Yuan Z, Liang H, Chen Q, Huo Y, König B, Ji S. Tuning the Photocatalytic Performance of Ruthenium(II) Polypyridine Complexes Via Ligand Modification for Visible-Light-Induced Phosphorylation of Tertiary Aliphatic Amines. Chemistry 2023; 29:e202202677. [PMID: 36250277 DOI: 10.1002/chem.202202677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.
Collapse
Affiliation(s)
- Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jia He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Zhanxiang Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
23
|
Nie C, Lin X, Zhao G, Wu K. Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angew Chem Int Ed Engl 2022; 61:e202213065. [DOI: 10.1002/anie.202213065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Jiang C, Cañada LM, Nguyen NB, Teets TS. Luminescent “Chugaev-type” Cyclometalated Iridium(III) Complexes Synthesized by Nucleophilic Addition of Hydrazine. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light-Driven Hydrodefluorination of Electron-Rich Aryl Fluorides by an Anionic Rhodium-Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205575. [PMID: 36017770 PMCID: PMC9826370 DOI: 10.1002/anie.202205575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/11/2023]
Abstract
An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.
Collapse
Affiliation(s)
- James T. Moore
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Michael J. Dorantes
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Zihan Pengmei
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Timothy M. Schwartz
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Jacob Schaffner
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Samantha L. Apps
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Carlo A. Gaggioli
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - Ujjal Das
- Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Laura Gagliardi
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - David A. Blank
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Connie C. Lu
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| |
Collapse
|
26
|
Kim D, Gray TG, Teets TS. Heteroleptic copper(I) charge-transfer chromophores with panchromatic absorption. Chem Commun (Camb) 2022; 58:11446-11449. [PMID: 36148809 DOI: 10.1039/d2cc03873k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new heteroleptic bis-chelate Cu(I) complexes showing panchromatic visible absorption are described here. With this heteroleptic design, we demonstrate that the energy levels of the spatially separated HOMO and LUMO can be independently and systematically controlled via ligand modification, with charge-transfer absorption bands throughout the visible and NIR regions that cover a wider range than typical Cu(I) chromophores.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
27
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light‐Driven Hydrodefluorination of Electron‐Rich Aryl Fluorides by an Anionic Rhodium‐Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James T. Moore
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Michael J. Dorantes
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Zihan Pengmei
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Timothy M. Schwartz
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Jacob Schaffner
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Samantha L. Apps
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Carlo A. Gaggioli
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Ujjal Das
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Laura Gagliardi
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - David A. Blank
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Connie C. Lu
- University of Minnesota College of Science and Engineering Chemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
28
|
Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022. [DOI: 10.3390/catal12080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artificial photosynthesis (AP) has been extensively applied in energy conversion and environment pollutants treatment. Considering the urgent demand for clean energy for human society, many researchers have endeavored to develop materials for AP. Among the materials for AP, photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their excellent tunability and performance, metal-based complexes stand out from many photocatalysis photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized and then the recent developments in molecular photosensitizers based on transition metal complexes are presented. The photosensitizers in this review are divided into two categories: noble-metal-based and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese, iron, and copper. Various examples of recently developed photosensitizers are also presented.
Collapse
|
29
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
30
|
Bürgin TH, Glaser F, Wenger OS. Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a Cr III Polypyridine Complex and Their Use in Photoredox Catalysis. J Am Chem Soc 2022; 144:14181-14194. [PMID: 35913126 PMCID: PMC9376921 DOI: 10.1021/jacs.2c04465] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The photoredox activity of well-known RuII complexes
stems from metal-to-ligand charge transfer (MLCT) excited states,
in which a ligand-based electron can initiate chemical reductions
and a metal-centered hole can trigger oxidations. CrIII polypyridines show similar photoredox properties, although they
have fundamentally different electronic structures. Their photoactive
excited state is of spin-flip nature, differing from the electronic
ground state merely by a change of one electron spin, but with otherwise
identical d-orbital occupancy. We find that the driving-force dependence
for photoinduced electron transfer from 10 different donors to a spin-flip
excited state of a CrIII complex is very similar to that
for a RuII polypyridine, and thereby validate the concept
of estimating the redox potential of d3 spin-flip excited
states in analogous manner as for the MLCT states of d6 compounds. Building on this insight, we use our CrIII complex for photocatalytic reactions not previously explored with
this compound class, including the aerobic bromination of methoxyaryls,
oxygenation of 1,1,2,2-tetraphenylethylene, aerobic hydroxylation
of arylboronic acids, and the vinylation of N-phenyl
pyrrolidine. This work contributes to understanding the fundamental
photochemical properties of first-row transition-metal complexes in
comparison to well-explored precious-metal-based photocatalysts.
Collapse
Affiliation(s)
- Tobias H Bürgin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Katlenok EA, Rozhkov AV, Ramazanov RR, Valiev RR, Levin OV, Goryachiy DO, Taydakov IV, Kuznetsov ML, Kukushkin VY. Photo- and Electroluminescent Neutral Iridium(III) Complexes Bearing Imidoylamidinate Ligands. Inorg Chem 2022; 61:8670-8684. [PMID: 35650511 DOI: 10.1021/acs.inorgchem.2c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imidoylamidinate-based heteroleptic bis(2-phenylbenzothiazole)iridium(III) and -rhodium(III) complexes [(bt)2M(N∩N)] (bt = 2-phenylbenzothiazole, N∩N = N'-(benzo[d]thiazol-2-yl)acetimidamidyl (Ir1 and Rh1), N'-(6-fluorobenzo[d]thiazol-2-yl)acetimidamidyl (Ir2), N'-(benzo[d]oxazol-2-yl)acetimidamidyl (Ir3), N'-(1-methyl-1H-benzo[d]imidazol-2-yl)acetimidamidyl (Ir4); yields 70-84%) were obtained by the reaction of the in situ-generated solvento-complex [(bt)2M(NCMe)2]NO3 and benzo[d]thia/oxa/N-methylimidozol-2-amines in the presence of NaOMe. Complexes Ir1-4 exhibited intense orange photoluminescence, reaching 37% at room temperature quantum yields, being immobilized in a poly(methyl methacrylate) matrix. A photophysical study of these species in a CH2Cl2 solution, neat powder, and frozen (77 K) MeOC2H4OH-EtOH glass matrix─along with density-functional theory (DFT), ab initio methods, and spin-orbit coupling time-dependent DFT calculations─verified the effects of substitution in the imidoylamidinate ligands on the excited-state properties. Electrochemical (cyclic voltammetry and differential pulse voltammetry) and theoretical DFT studies demonstrated noninnocent behavior of the imidoylamidinate ligands in Ir1-4 and Rh1 complexes due to the significant contribution coming from these ligands in the HOMO of the complexes. The iridium(III) species exhibit a ligand (L, 2-phenylbenzothiazole)-centered (3LC), metal-to-ligand (L', imidoylamidinate) charge-transfer (3ML'CT,3MLCT) character of their emission. The imidoylamidinate-based iridium(III) species were proved to be effective as the emissive dopant in an organic light-emitting diode device, fabricated in the framework of this study.
Collapse
Affiliation(s)
- Eugene A Katlenok
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Anton V Rozhkov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Ruslan R Ramazanov
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Rashid R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Oleg V Levin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitrii O Goryachiy
- P.N. Lebedev Physical of the Institute Russian Academy of Science, Leninsky Pr., 53, 119991 Moscow, Russian Federation
| | - Ilya V Taydakov
- P.N. Lebedev Physical of the Institute Russian Academy of Science, Leninsky Pr., 53, 119991 Moscow, Russian Federation
| | - Maxim L Kuznetsov
- Departamento de Engenharia Química, Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.,Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russian Federation
| |
Collapse
|
33
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
35
|
Sanosa N, Peñin B, Sampedro D, Funes-Ardoiz I. On the Mechanism of Halogen Atom Transfer from C‐X Bonds to α‐Aminoalkyl Radicals: A Computational Study. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nil Sanosa
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Beatriz Peñin
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios,53 26004 Logroño SPAIN
| | - Diego Sampedro
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Ignacio Funes-Ardoiz
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios, 53 26004 Logroño SPAIN
| |
Collapse
|
36
|
Schreier MR, Guo X, Pfund B, Okamoto Y, Ward TR, Kerzig C, Wenger OS. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Acc Chem Res 2022; 55:1290-1300. [PMID: 35414170 PMCID: PMC9069695 DOI: 10.1021/acs.accounts.2c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Cyclometalated iridium(III) complexes are frequently employed in
organic light emitting diodes, and they are popular photocatalysts
for solar energy conversion and synthetic organic chemistry. They
luminesce from redox-active excited states that can have high triplet
energies and long lifetimes, making them well suited for energy transfer
and photoredox catalysis. Homoleptic tris(cyclometalated) iridium(III)
complexes are typically very hydrophobic and do not dissolve well
in polar solvents, somewhat limiting their application scope. We developed
a family of water-soluble sulfonate-decorated variants with tailored
redox potentials and excited-state energies to address several key
challenges in aqueous photochemistry. First, we aimed at combining
enzyme with photoredox catalysis to
synthesize enantioenriched products in a cyclic reaction network.
Since the employed biocatalyst operates best in aqueous solution,
a water-soluble photocatalyst was needed. A new tris(cyclometalated)
iridium(III) complex provided enough reducing power for the photochemical
reduction of imines to racemic mixtures of amines and furthermore
was compatible with monoamine oxidase (MAO-N-9), which deracemized
this mixture through a kinetic resolution of the racemic amine via
oxidation to the corresponding imine. This process led to the accumulation
of the unreactive amine enantiomer over time. In subsequent studies,
we discovered that the same iridium(III) complex photoionizes under
intense irradiation to give hydrated electrons as a result of consecutive
two-photon excitation. With visible light as energy input, hydrated
electrons become available in a catalytic fashion, thereby allowing
the comparatively mild reduction of substrates that would typically
only be reactive under harsher conditions. Finally, we became interested
in photochemical upconversion in aqueous solution, for which it was
desirable to obtain water-soluble iridium(III) compounds with very
high triplet excited-state energies. This goal was achieved through
improved ligand design and ultimately enabled sensitized triplet–triplet
annihilation upconversion unusually far into the ultraviolet spectral
range. Studies of photoredox catalysis, energy transfer catalysis,
and
photochemical upconversion typically rely on the use of organic solvents.
Water could potentially be an attractive alternative in many cases,
but photocatalyst development lags somewhat behind for aqueous solution
compared to organic solvent. The purpose of this Account is to provide
an overview of the breadth of new research perspectives that emerged
from the development of water-soluble fac-[Ir(ppy)]3 complexes (ppy = 2-phenylpyridine) with sulfonated ligands.
We hope to inspire the use of some of these or related coordination
compounds in aqueous photochemistry and to stimulate further conceptual
developments at the interfaces of coordination chemistry, photophysics,
biocatalysis, and sustainable chemistry.
Collapse
Affiliation(s)
- Mirjam R. Schreier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Xingwei Guo
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Yasunori Okamoto
- National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Thomas R. Ward
- National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- National Competence Center in Research, Molecular Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
37
|
Gimeno L, Queffelec C, Blart E, Pellegrin Y. Copper(I) Bis(diimine) Complexes with High Photooxidation Power: Reductive Quenching of the Excited State with a Benzimidazoline Sacrificial Donor. ACS OMEGA 2022; 7:13112-13119. [PMID: 35474762 PMCID: PMC9026092 DOI: 10.1021/acsomega.2c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The reductive quenching of photoexcited photosensitizers is a very efficient way to achieve challenging reduction reactions. In this process, the excited photosensitizer is reduced by a sacrificial electron donor. This mechanism is rarely observed with copper(I) bis(diimine) complexes, which are nevertheless acknowledged as very promising photosensitizers. This is due to the fact that they are very poor photooxidants and prove unable to react with common donors once promoted in their excited state. In this article, we evidence the rare reductive quenching cycle with two specially designed copper(I) complexes. These complexes exhibit improved photooxidation power thanks to an optimized coordination sphere made of strongly π-accepting ligands. Reductive quenching of the excited state of the latter complexes with a classical benzimidazoline sacrificial donor is monitored, and reduced complexes are accumulated during prolonged photolysis. Trials to utilize the photogenerated reductive power are presented.
Collapse
|
38
|
Liao LL, Song L, Yan SS, Ye JH, Yu DG. Highly reductive photocatalytic systems in organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
DiLuzio S, Connell TU, Mdluli V, Kowalewski JF, Bernhard S. Understanding Ir(III) Photocatalyst Structure-Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. J Am Chem Soc 2022; 144:1431-1444. [PMID: 35025486 DOI: 10.1021/jacs.1c12059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-throughput synthesis and screening methods were used to measure the photochemical activity of 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes for the photoreduction of Sn(II) and Zn(II) cations to their corresponding neutral metals. Kinetic data collection was carried out using home-built photoreactors and measured initial rates, obtained through an automated fitting algorithm, spanned between 0-120 μM/s for Sn(0) deposition and 0-90 μM/s for Zn(0) deposition. Photochemical reactivity was compared to photophysical properties previously measured such as deaerated excited state lifetime and emission spectral data for these same complexes; however, no clear correlations among these features were observed. A formal photochemical rate law was then developed to help elucidate the observed reactivity. Initial rates were found to be directly correlated to the product of incident photon flux with three reaction elementary efficiencies: (1) the fraction of light absorbed by the photocatalyst, (2) the fraction of excited state species that are quenched by the electron donor, and (3) the cage escape efficiency. The most active catalysts exhibit high efficiencies for all three steps, and catalyst engineering requirements to maximize these elementary efficiencies were postulated. The kinetic treatment provided the mechanistic information needed to decipher the observed structure/function trends in the high-throughput work.
Collapse
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Timothy U Connell
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Velabo Mdluli
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub F Kowalewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
41
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Li
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
42
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
43
|
Lai P, Yoon S, Wu Y, Teets TS. Effects of Ancillary Ligands on Deep Red to Near-Infrared Cyclometalated Iridium Complexes. ACS ORGANIC & INORGANIC AU 2022; 2:236-244. [PMID: 36855470 PMCID: PMC9954257 DOI: 10.1021/acsorginorgau.1c00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The design of organometallic compounds with efficient phosphorescence in the deep red to near-infrared portions of the spectrum is a long-standing fundamental challenge. Here we describe a series of heteroleptic bis-cyclometalated iridium complexes with phosphorescence in these low-energy regions of the spectrum. The cyclometalating ligands in this study feature a metalated benzothiophene aryl group substituted with a quinoline, isoquinoline, or phenanthridine heterocycle. Increasing the conjugation on the heterocycle stabilizes the ligand-centered LUMO, decreases the HOMO-LUMO gap, and enables phosphorescence to occur at long wavelengths. These cyclometalating ligands are paired with a variety of electron-rich ancillary ligands, such as dithiocarbamate (dipdtc), β-ketoiminate (acNac), β-diketiminate (NacNac), amidinate (dipba), and hexahydropyrimidopyrimidine (hpp), some of which have significant influences on the phosphorescence wavelength and excited-state dynamics. The syntheses of seven compounds in this series are described, three of which are structurally validated by single-crystal X-ray diffraction. Cyclic voltammetry reveals the effects of ligand modification on the frontier orbital energies. The photophysical properties of all compounds are thoroughly characterized by UV-vis absorption spectroscopy and steady-state photoluminescence at room-temperature and 77 K. Photoluminescence quantum yields and lifetimes of all compounds are reported.
Collapse
|
44
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
45
|
Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Org Chem Front 2022. [DOI: 10.1039/d2qo01035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and catalyst-free radical addition/1,2-aryl migration cascade process of ally alcohol driven by halogen bond was developed under visible light irradiation, featuring mild conditions, practical procedures, and broad substrate scope.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youkang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Danning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
46
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
47
|
Ma H, Long S, Cao J, Xu F, Zhou P, Zeng G, Zhou X, Shi C, Sun W, Du J, Han K, Fan J, Peng X. New Cy5 photosensitizers for cancer phototherapy: a low singlet-triplet gap provides high quantum yield of singlet oxygen. Chem Sci 2021; 12:13809-13816. [PMID: 34760166 PMCID: PMC8549779 DOI: 10.1039/d1sc04570a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Highly efficient triplet photosensitizers (PSs) have attracted increasing attention in cancer photodynamic therapy where photo-induced reactive oxygen species (ROSs, such as singlet oxygen) are produced via singlet–triplet intersystem crossing (ISC) of the excited photosensitizer to kill cancer cells. However, most PSs exhibit the fatal defect of a generally less-than-1% efficiency of ISC and low yield of ROSs, and this defect strongly impedes their clinical application. In the current work, a new strategy to enhance the ISC and high phototherapy efficiency has been developed, based on the molecular design of a thio-pentamethine cyanine dye (TCy5) as a photosensitizer. The introduction of an electron-withdrawing group at the meso-position of TCy5 could dramatically reduce the singlet–triplet energy gap (ΔEst) value (from 0.63 eV to as low as 0.14 eV), speed up the ISC process (τISC = 1.7 ps), prolong the lifetime of the triplet state (τT = 319 μs) and improve singlet oxygen (1O2) quantum yield to as high as 99%, a value much higher than those of most reported triplet PSs. Further in vitro and in vivo experiments have shown that TCy5-CHO, with its efficient 1O2 generation and good biocompatibility, causes an intense tumor ablation in mice. This provides a new strategy for designing ideal PSs for cancer photo-therapy. The electron-withdrawing group at the meso-position of Thio-Cy5 could dramatically reduce the singlet–triplet energy gap, and speed up the intersystem crossing process.![]()
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457, Zhongshan Road Dalian 116023 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
48
|
Zippilli C, Bizzarri BM, Gabellone S, Botta L, Saladino R. Oxidative Coupling of Coumarins by Blue‐LED‐Driven
in situ
Activation of Horseradish Peroxidase in a Two‐Liquid‐Phase System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Claudio Zippilli
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Bruno Mattia Bizzarri
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Sofia Gabellone
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Lorenzo Botta
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences University of Tuscia Via S.C. De Lellis s.n.c. 01100 Viterbo Italy
| |
Collapse
|
49
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity*. Angew Chem Int Ed Engl 2021; 60:21418-21425. [PMID: 34288312 PMCID: PMC8440429 DOI: 10.1002/anie.202107169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose that electrochemical stimulation induces new photocatalytic activity from a range of structurally diverse conventional photocatalysts. These studies uncover a new electron-primed photoredox catalyst capable of promoting the reductive cleavage of strong C(sp2 )-N and C(sp2 )-O bonds. We illustrate several examples of the synthetic utility of these deeply reducing but otherwise safe and mild catalytic conditions. Finally, we employ electrochemical current measurements to perform a reaction progress kinetic analysis. This technique reveals that the improved activity of this new system is a consequence of an enhanced catalyst stability profile.
Collapse
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706
| |
Collapse
|
50
|
Chernowsky CP, Chmiel AF, Wickens ZK. Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Colleen P. Chernowsky
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Alyah F. Chmiel
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| | - Zachary K. Wickens
- Department of Chemistry University of Wisconsin-Madison 1101 University Ave Madison WI 53706 USA
| |
Collapse
|