1
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Doyle LA, Takushi B, Kibler RD, Milles LF, Orozco CT, Jones JD, Jackson SE, Stoddard BL, Bradley P. De novo design of knotted tandem repeat proteins. Nat Commun 2023; 14:6746. [PMID: 37875492 PMCID: PMC10598012 DOI: 10.1038/s41467-023-42388-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
De novo protein design methods can create proteins with folds not yet seen in nature. These methods largely focus on optimizing the compatibility between the designed sequence and the intended conformation, without explicit consideration of protein folding pathways. Deeply knotted proteins, whose topologies may introduce substantial barriers to folding, thus represent an interesting test case for protein design. Here we report our attempts to design proteins with trefoil (31) and pentafoil (51) knotted topologies. We extended previously described algorithms for tandem repeat protein design in order to construct deeply knotted backbones and matching designed repeat sequences (N = 3 repeats for the trefoil and N = 5 for the pentafoil). We confirmed the intended conformation for the trefoil design by X ray crystallography, and we report here on this protein's structure, stability, and folding behaviour. The pentafoil design misfolded into an asymmetric structure (despite a 5-fold symmetric sequence); two of the four repeat-repeat units matched the designed backbone while the other two diverged to form local contacts, leading to a trefoil rather than pentafoil knotted topology. Our results also provide insights into the folding of knotted proteins.
Collapse
Affiliation(s)
- Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Brittany Takushi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Lukas F Milles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
| | - Philip Bradley
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
- Division of Public Health Sciences and Program in Computational Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N, Seattle, WA, 98009, USA.
| |
Collapse
|
3
|
Di W, Xue K, Cai J, Zhu Z, Li Z, Fu H, Lei H, Hu W, Tang C, Wang W, Cao Y. Single-Molecule Force Spectroscopy Reveals Cation-π Interactions in Aqueous Media Are Highly Affected by Cation Dehydration. PHYSICAL REVIEW LETTERS 2023; 130:118101. [PMID: 37001074 DOI: 10.1103/physrevlett.130.118101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Accepted: 01/24/2023] [Indexed: 06/19/2023]
Abstract
Cation-π interactions underlie many important processes in biology and materials science. However, experimental investigations of cation-π interactions in aqueous media remain challenging. Here, we studied the cation-π binding strength and mechanism by pulling two hydrophobic polymers with distinct cation binding properties, i.e., poly-pentafluorostyrene and polystyrene, in aqueous media using single-molecule force spectroscopy and nuclear magnetic resonance measurement. We found that the interaction strengths linearly depend on the cation concentrations, following the order of Li^{+}<NH_{4}^{+}<Na^{+}<K^{+}. The binding energies are 0.03-0.23 kJ mol^{-1} M^{-1}. This order is distinct from the strength of cation-π interactions in gas phase and may be caused by the different dehydration ability of the cations. Taken together, our method provides a unique perspective to investigate cation-π interactions under physiologically relevant conditions.
Collapse
Affiliation(s)
- Weishuai Di
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Kai Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physical and Mathematical Science Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jun Cai
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zihan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenbing Hu
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Guo W, Lu T, Crisci R, Nagao S, Wei T, Chen Z. Determination of protein conformation and orientation at buried solid/liquid interfaces. Chem Sci 2023; 14:2999-3009. [PMID: 36937592 PMCID: PMC10016606 DOI: 10.1039/d2sc06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique - sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Ralph Crisci
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Satoshi Nagao
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Ako-gun Kamigouri-cho Hyogo 678-1297 Japan
| | - Tao Wei
- Department of Chemical Engineering, Howard University 2366 Sixth Street NW Washington 20059 DC USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| |
Collapse
|
5
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
6
|
Oliveira RJD. Biotinylation Eliminates the Intermediate State of Top7 Designed with an HIV-1 Epitope. J Phys Chem B 2022; 126:7331-7342. [PMID: 36121918 DOI: 10.1021/acs.jpcb.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation. Here, I investigated the 2F5 epitope grafted into the Top7 as the scaffold in which the resulting immunoreactive protein precipitates along the storage time, as opposed to its completely soluble biotinylated version. Molecular dynamics showed that biotinylation eliminates the intermediate state of the scaffold-epitope Top7-2F5 by switching a noncooperative to a cooperative folding. The aggregation propensity of the Top7-designed proteins is examined in light of thermodynamic cooperativity and kinetic traps along the decreasing depth of the intermediate ensemble in the free energy landscape. This protocol may predict stable and soluble scaffold-epitopes with the purpose of composing novel therapeutic and diagnostic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
7
|
Yadahalli S, Jayanthi LP, Gosavi S. A Method for Assessing the Robustness of Protein Structures by Randomizing Packing Interactions. Front Mol Biosci 2022; 9:849272. [PMID: 35832734 PMCID: PMC9271847 DOI: 10.3389/fmolb.2022.849272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Many single-domain proteins are not only stable and water-soluble, but they also populate few to no intermediates during folding. This reduces interactions between partially folded proteins, misfolding, and aggregation, and makes the proteins tractable in biotechnological applications. Natural proteins fold thus, not necessarily only because their structures are well-suited for folding, but because their sequences optimize packing and fit their structures well. In contrast, folding experiments on the de novo designed Top7 suggest that it populates several intermediates. Additionally, in de novo protein design, where sequences are designed for natural and new non-natural structures, tens of sequences still need to be tested before success is achieved. Both these issues may be caused by the specific scaffolds used in design, i.e., some protein scaffolds may be more tolerant to packing perturbations and varied sequences. Here, we report a computational method for assessing the response of protein structures to packing perturbations. We then benchmark this method using designed proteins and find that it can identify scaffolds whose folding gets disrupted upon perturbing packing, leading to the population of intermediates. The method can also isolate regions of both natural and designed scaffolds that are sensitive to such perturbations and identify contacts which when present can rescue folding. Overall, this method can be used to identify protein scaffolds that are more amenable to whole protein design as well as to identify protein regions which are sensitive to perturbations and where further mutations should be avoided during protein engineering.
Collapse
Affiliation(s)
| | | | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
8
|
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution. Commun Biol 2022; 5:307. [PMID: 35379917 PMCID: PMC8979947 DOI: 10.1038/s42003-022-03258-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Talin as a critical focal adhesion mechanosensor exhibits force-dependent folding dynamics and concurrent interactions. Being a cytoplasmic protein, talin also might interact with several cytosolic chaperones; however, the roles of chaperones in talin mechanics remain elusive. To address this question, we investigated the force response of a mechanically stable talin domain with a set of well-known unfoldase (DnaJ, DnaK) and foldase (DnaKJE, DsbA) chaperones, using single-molecule magnetic tweezers. Our findings demonstrate that chaperones could affect adhesion proteins’ stability by changing their folding mechanics; while unfoldases reduce their unfolding force from ~11 pN to ~6 pN, foldase shifts it upto ~15 pN. Since talin is mechanically synced within 2 pN force ranges, these changes are significant in cellular conditions. Furthermore, we determined that chaperones directly reshape the energy landscape of talin: unfoldases decrease the unfolding barrier height from 26.8 to 21.7 kBT, while foldases increase it to 33.5 kBT. We reconciled our observations with eukaryotic Hsp70 and Hsp40 and observed their similar function of decreasing the talin unfolding barrier. Quantitative mapping of this chaperone-induced talin folding landscape directly illustrates that chaperones perturb the adhesion protein stability under physiological force, thereby, influencing their force-dependent interactions and adhesion dynamics. Chakraborty et al. uses single-molecule magnetic tweezers to investigate the chaperone-modulated talin protein mechanics. The results showed that chaperones are involved in the regulation of talin folding/unfolding under mechanical force with some chaperones stabilizing talin and increasing the force, whereas others destabilize it and reduce the force.
Collapse
|
9
|
Pang X, Yuan C, Sun R, Wang K, Tang B. Revealing the Underestimated Anticancer Effect of Azurin by Mechanical Unfolding. ACS Biomater Sci Eng 2021; 7:4809-4818. [PMID: 34558912 DOI: 10.1021/acsbiomaterials.1c00934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
As a potential anticancer agent, azurin has attracted extensive attraction among chemists, physicists, and material scientists. Its structural and unfolding/folding information has been partially understood, but some detailed information, such as the difference in the unfolding processes between apo-azurin and holo-azurin, the mechanical stability, and the role of the copper cluster in its stability, has not been addressed adequately, especially at the single-molecule level. Here, we employed AFM-based single-molecule force spectroscopy to investigate the unfolding process of azurin in the apo and holo forms under an external force. The results indicated that the unfolding processes of apo-azurin and holo-azurin are different, and holo-azurin requires a stronger force to unfold than does apo-azurin. The copper cluster exhibited a more significant impact on the stability and the folding process of holo-azurin: the copper cluster was completely broken, and the copper ion left the unfolded azurin during the unfolding process of azurin. We suspected that the presence of the disulfide bond in azurin made the unfolding of the copper cluster different from that in pseudoazurin, which is also a type I copper protein like azurin. Rarely reported in previous studies, the mechanical strength of the Cu-N(His) bond of the copper cluster was obtained in this study, which is weaker than that of most metal-S(Cys) bonds but higher than that of the Fe-N(His) bond. Altogether, our results offer a possible new scenario for azurin to widely extend its anticancer activity.
Collapse
Affiliation(s)
- Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.,Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Caijie Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Rui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, Guangdong P.R. China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|