1
|
Zhao Z, Shen Y, Hu R, Xu D. Advances in flexible ionic thermal sensors: present and perspectives. NANOSCALE 2024; 17:187-213. [PMID: 39575937 DOI: 10.1039/d4nr03423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic thermal sensors (ITSs) represent a promising frontier in sensing technology, offering unique advantages over conventional electronic sensors. Comprising a polymer matrix and electrolyte, these sensors possess inherent flexibility, stretchability, and biocompatibility, allowing them to establish stable and intimate contact with soft surfaces without inducing mechanical or thermal stress. Through an ion migration/dissociation mechanism similar to biosensing, ITSs ensure low impedance contact and high sensitivity, especially in physiological monitoring applications. This review provides a comprehensive overview of ionic thermal sensing mechanisms, contrasting them with their electronic counterparts. Additionally, it explores the intricacy of the sensor architecture, detailing the roles of active sensing elements, stretchable electrodes, and flexible substrates. The decoupled sensing mechanisms for skin-inspired multimodal sensors are also introduced based on several representative examples. The latest applications of ITS are categorized into ionic skin (i-skin), healthcare, spatial thermal perception, and environment detection, regarding their materials, structures, and operation modes. Finally, the perspectives of ITS research are presented, emphasizing the significance of standardized sensing parameters and emerging requirements for practical applications.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Yun Shen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Applied Physics, Kyung Hee University, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Ogbolu BO, Poudel TP, Dikella TNDD, Truong E, Chen Y, Hou D, Li T, Liu Y, Gabriel E, Xiong H, Huang C, Hu YY. Tailoring Ion Transport in Li 3-3yHo 1+yCl 6-xBr x via Transition-Metal Free Structural Planes and Charge Carrier Distribution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409668. [PMID: 39690877 DOI: 10.1002/advs.202409668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Indexed: 12/19/2024]
Abstract
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li+ mobility. In this study, Li+ transport in structurally modified Li3HoCl6, via Br- introduction and Li+ deficiency, is explored. The optimized Li3-3 yHo1+ yCl6- xBrx achieves an ionic conductivity of 3.8 mS cm-1 at 25 °C, the highest reported for holmium halide materials. 6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+ motional rate neighboring 116 MHz. X-ray diffraction analyses reveal mixed-anion-induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho-free planes with favorable energetics for Li+ migration. Bond valence site energy analysis highlights preferred Li+ transport pathways, particularly in structural planes devoid of Ho3+ blocking effects. Molecular dynamics simulations corroborate enhanced Li+ diffusion with Br- introduction into Li3HoCl6. Li-Ho electrostatic repulsions in the (001) plane presumably drive Li+ diffusion into the Ho-free (002) layer, enabling rapid intraplanar Li+ motion and exchange between the 2d and 4h sites. Li3-3 yHo1+ yCl6- xBrx also demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high-performance fast ion conductors for all-solid-state batteries.
Collapse
Affiliation(s)
- Bright O Ogbolu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Tej P Poudel
- Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32310, USA
| | - Thilina N D D Dikella
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Erica Truong
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Yudan Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Dewen Hou
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Eric Gabriel
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Hui Xiong
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Chen Huang
- Department of Scientific Computing, Florida State University, Tallahassee, FL, 32306, USA
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32310, USA
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| |
Collapse
|
3
|
Szymanski NJ, Byeon YW, Sun Y, Zeng Y, Bai J, Kunz M, Kim DM, Helms BA, Bartel CJ, Kim H, Ceder G. Quantifying the regime of thermodynamic control for solid-state reactions during ternary metal oxide synthesis. SCIENCE ADVANCES 2024; 10:eadp3309. [PMID: 38959320 PMCID: PMC11221506 DOI: 10.1126/sciadv.adp3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The success of solid-state synthesis often hinges on the first intermediate phase that forms, which determines the remaining driving force to produce the desired target material. Recent work suggests that when reaction energies are large, thermodynamics primarily dictates the initial product formed, regardless of reactant stoichiometry. Here, we validate this principle and quantify its constraints by performing in situ characterization on 37 pairs of reactants. These experiments reveal a threshold for thermodynamic control in solid-state reactions, whereby initial product formation can be predicted when its driving force exceeds that of all other competing phases by ≥60 milli-electron volt per atom. In contrast, when multiple phases have a comparable driving force to form, the initial product is more often determined by kinetic factors. Analysis of the Materials Project data shows that 15% of possible reactions fall within the regime of thermodynamic control, highlighting the opportunity to predict synthesis pathways from first principles.
Collapse
Affiliation(s)
- Nathan J. Szymanski
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Young-Woon Byeon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yingzhi Sun
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Zeng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jianming Bai
- Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin Kunz
- The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dong-Min Kim
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brett A. Helms
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Bartel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haegyeom Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gerbrand Ceder
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Han G, Vasylenko A, Daniels LM, Collins CM, Corti L, Chen R, Niu H, Manning TD, Antypov D, Dyer MS, Lim J, Zanella M, Sonni M, Bahri M, Jo H, Dang Y, Robertson CM, Blanc F, Hardwick LJ, Browning ND, Claridge JB, Rosseinsky MJ. Superionic lithium transport via multiple coordination environments defined by two-anion packing. Science 2024; 383:739-745. [PMID: 38359130 DOI: 10.1126/science.adh5115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.
Collapse
Affiliation(s)
- Guopeng Han
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Andrij Vasylenko
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Luke M Daniels
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Chris M Collins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Lucia Corti
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| | - Ruiyong Chen
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Hongjun Niu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Troy D Manning
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Dmytro Antypov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| | - Matthew S Dyer
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| | - Jungwoo Lim
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK
| | - Marco Zanella
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Manel Sonni
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Mounib Bahri
- Albert Crewe Centre, University of Liverpool, Research Technology Building, Elisabeth Street, Pembroke Place, Liverpool L69 3GE, UK
| | - Hongil Jo
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| | - Yun Dang
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Frédéric Blanc
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
- Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK
| | - Laurence J Hardwick
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
- Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK
| | - Nigel D Browning
- Albert Crewe Centre, University of Liverpool, Research Technology Building, Elisabeth Street, Pembroke Place, Liverpool L69 3GE, UK
- School of Engineering, Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - John B Claridge
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| | - Matthew J Rosseinsky
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK
| |
Collapse
|
5
|
Hu D, Beauvais ML, Kamm GE, Mullens BG, Sanchez Monserrate BA, Vornholt SM, Chupas PJ, Chapman KW. Resolving Fast Relative Kinetics in Inorganic Solid-State Synthesis. J Am Chem Soc 2023. [PMID: 38019924 DOI: 10.1021/jacs.3c10916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Solid-state syntheses are generally regarded as being slow, limited by transport, and, as such, are often only stopped to check the products after many hours at high temperature. Here, using a custom-designed reactor to rapidly initiate solid-state syntheses, we are able to capture the earliest stages of a reaction using in situ X-ray scattering. For the reaction of TiO2 and Li2CO3 to form spinel lithium titanate (Li4Ti5O12)─an anode material for fast-charging applications─we capture two distinct kinetic regimes, including fast initial kinetics in the first seconds-minutes of the reaction that account for significant product formation. We use an Avrami model to compare the reaction at high temperatures (700-750 °C), which results in the rapid formation of Li4Ti5O12 within minutes, and lower temperatures (482 °C), consistent with conditions that might be chosen based on "Tamman's rule", a common heuristic. Our analysis reveals characteristic Avrami slopes (i.e., dimensionalities) for each step in the chemical transformation. We anticipate that the fast initial reaction kinetics found here are likely to be common in the synthesis of other materials used in battery electrodes, solid-state electrolytes, ion-conductive membranes, etc. where ion transport is a prerequisite for functionality.
Collapse
Affiliation(s)
- Danrui Hu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Michelle L Beauvais
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Gabrielle E Kamm
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Bryce G Mullens
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Peter J Chupas
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Gautam A, Al-Kutubi H, Famprikis T, Ganapathy S, Wagemaker M. Exploring the Relationship Between Halide Substitution, Structural Disorder, and Lithium Distribution in Lithium Argyrodites (Li 6-xPS 5-xBr 1+x). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8081-8091. [PMID: 37840779 PMCID: PMC10569443 DOI: 10.1021/acs.chemmater.3c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
Abstract
Lithium argyrodite superionic conductors have recently gained significant attention as potential solid electrolytes for all-solid-state batteries because of their high ionic conductivity and ease of processing. Promising aspects of these materials are the ability to introduce halides (Li6-xPS5-xHal1+x, Hal = Cl and Br) into the crystal structure, which can greatly impact the lithium distribution over the wide range of accessible sites and the structural disorder between the S2- and Hal- anion on the Wyckoff 4d site, both of which strongly influence the ionic conductivity. However, the complex relationship among halide substitution, structural disorder, and lithium distribution is not fully understood, impeding optimal material design. In this study, we investigate the effect of bromide substitution on lithium argyrodite (Li6-xPS5-xBr1+x, in the range 0.0 ≤ x ≤ 0.5) and engineer structural disorder by changing the synthesis protocol. We reveal the correlation between the lithium substructure and ionic transport using neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy, and electrochemical impedance spectroscopy. We find that a higher ionic conductivity is correlated with a lower average negative charge on the 4d site, located in the center of the Li+ "cage", as a result of the partial replacement of S2- by Br-. This leads to weaker interactions within the Li+ "cage", promoting Li-ion diffusivity across the unit cell. We also identify an additional T4 Li+ site, which enables an alternative jump route (T5-T4-T5) with a lower migration energy barrier. The resulting expansion of the Li+ cages and increased connections between cages lead to a maximum ionic conductivity of 8.55 mS/cm for quenched Li5.5PS4.5Br1.5 having the highest degree of structural disorder, an 11-fold improvement compared to slow-cooled Li6PS5Br having the lowest degree of structural disorder. Thereby, this work advances the understanding of the structure-transport correlations in lithium argyrodites, specifically how structural disorder and halide substitution impact the lithium substructure and transport properties and how this can be realized effectively through the synthesis method and tuning of the composition.
Collapse
Affiliation(s)
- Ajay Gautam
- Storage of Electrochemical
Energy, Department of Radiation Science and Technology, Faculty of
Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Hanan Al-Kutubi
- Storage of Electrochemical
Energy, Department of Radiation Science and Technology, Faculty of
Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Theodosios Famprikis
- Storage of Electrochemical
Energy, Department of Radiation Science and Technology, Faculty of
Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Swapna Ganapathy
- Storage of Electrochemical
Energy, Department of Radiation Science and Technology, Faculty of
Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Marnix Wagemaker
- Storage of Electrochemical
Energy, Department of Radiation Science and Technology, Faculty of
Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands
| |
Collapse
|
7
|
Hwang S, Seo S, Kim D. A Novel Time-Saving Synthesis Approach for Li-Argyrodite Superionic Conductor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301707. [PMID: 37132597 PMCID: PMC10401185 DOI: 10.1002/advs.202301707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Indexed: 05/04/2023]
Abstract
The wet-chemical synthetic approach for Li-argyrodite superionic conductors for all-solid-state batteries (ASSBs) is promising as it saves time, energy, and cost, while achieving scalable production. However, it faces certain commercialization issues such as byproduct generation, nucleophilic attack of the solvent, and long processing times. In this study, a facile and time-saving microwave-assisted wet synthesis (MW-process) approach is proposed for Li6 PS5 Cl (LPSC), which is completed in 3 h at the precursor-synthesis stage. The LPSC crystal obtained from the MW-process presents various advantages such as fast-PS4 3- generation, high solubility of LiCl, and low adverse effects from solvent molecules. These features help in achieving a high Li-ion conductivity (2.79 mS cm-1 ) and low electric conductivity (1.85×10-6 mS cm-1 ). Furthermore, the LPSC crystal is stable when reacting with Li metal (2000 h at 0.1 mA cm-2 ) and exhibits superior cyclability with LiNi0.6 Co0.2 Mn0.2 (NCM622) (145.5 mA h g-1 at 0.5 C, 200 cycles with 0.12% of capacity loss per cycle). The proposed synthetic approach presents new insights into wet-chemical engineering for sulfide-based solid-electrolytes (SEs), which is crucial for developing ASSBs from a commercial-scale perspective.
Collapse
Affiliation(s)
- Suk‐Ho Hwang
- School of Civil, Environmental, and architectural EngineeringKorea UniversitySeoul02841South Korea
| | - Seung‐Deok Seo
- School of Civil, Environmental, and architectural EngineeringKorea UniversitySeoul02841South Korea
| | - Dong‐Wan Kim
- School of Civil, Environmental, and architectural EngineeringKorea UniversitySeoul02841South Korea
| |
Collapse
|
8
|
Hood ZD, Mane AU, Sundar A, Tepavcevic S, Zapol P, Eze UD, Adhikari SP, Lee E, Sterbinsky GE, Elam JW, Connell JG. Multifunctional Coatings on Sulfide-Based Solid Electrolyte Powders with Enhanced Processability, Stability, and Performance for Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300673. [PMID: 36929566 DOI: 10.1002/adma.202300673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Indexed: 05/26/2023]
Abstract
Sulfide-based solid-state electrolytes (SSEs) exhibit many tantalizing properties including high ionic conductivity and favorable mechanical properties for next-generation solid-state batteries. Widespread adoption of these materials is hindered by their intrinsic instability under ambient conditions, which makes them difficult to process at scale, and instability at the Li||SSE and cathode||SSE interfaces, which limits cell performance and lifetime. Atomic layer deposition is leveraged to grow thin Al2 O3 coatings on Li6 PS5 Cl powders to address both issues simultaneously. These coatings can be directly grown onto Li6 PS5 Cl particles with negligible chemical modification of the underlying material and enable exposure of powders to pure and H2 O-saturated oxygen environments for ≥4 h with minimal reactivity, compared with significant degradation of the uncoated powder. Pellets fabricated from coated powders exhibit ionic conductivities up to 2× higher than those made from uncoated material, with a simultaneous decrease in electronic conductivity and significant suppression of chemical reactivity at the Li-SSE interface. These benefits result in significantly improved room temperature cycle life at high capacity and current density. It is hypothesized that this enhanced performance derives from improved intergranular properties and improved Li metal adhesion. This work points to a completely new framework for designing active, stable, and scalable materials for next-generation solid-state batteries.
Collapse
Affiliation(s)
- Zachary D Hood
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Anil U Mane
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Aditya Sundar
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Sanja Tepavcevic
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Peter Zapol
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Udochukwu D Eze
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Shiba P Adhikari
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Eungje Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, USA
| | - Jeffrey W Elam
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Justin G Connell
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
9
|
Poletayev AD, Dawson JA, Islam MS, Lindenberg AM. Defect-driven anomalous transport in fast-ion conducting solid electrolytes. NATURE MATERIALS 2022; 21:1066-1073. [PMID: 35902748 DOI: 10.1038/s41563-022-01316-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. The mechanistic connections between material processing, defect chemistry, transport dynamics and practical performance are of considerable importance but remain incomplete. Here, inspired by studies of fluids and biophysical systems, we re-examine anomalous diffusion in the iconic two-dimensional fast-ion conductors, the β- and β″-aluminas. Using large-scale simulations, we reproduce the frequency dependence of alternating-current ionic conductivity data. We show how the distribution of charge-compensating defects, modulated by processing, drives static and dynamic disorder and leads to persistent subdiffusive ion transport at macroscopic timescales. We deconvolute the effects of repulsions between mobile ions, the attraction between the mobile ions and charge-compensating defects, and geometric crowding on ionic conductivity. Finally, our characterization of memory effects in transport connects atomistic defect chemistry to macroscopic performance with minimal assumptions and enables mechanism-driven 'atoms-to-device' optimization of fast-ion conductors.
Collapse
Affiliation(s)
- Andrey D Poletayev
- Stanford Institute for Materials and Energy Sciences, SLAC National Laboratory, Menlo Park, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - James A Dawson
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Energy, Newcastle University, Newcastle upon Tyne, UK
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Aaron M Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Laboratory, Menlo Park, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Gautam A, Ghidiu M, Hansen AL, Ohno S, Zeier WG. Sn Substitution in the Lithium Superionic Argyrodite Li 6PCh 5I (Ch = S and Se). Inorg Chem 2021; 60:18975-18980. [PMID: 34851091 DOI: 10.1021/acs.inorgchem.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lithium argyrodites Li6PS5X (X = Cl, Br, and I) have attracted interest as fast solid ionic conductors for solid-state batteries. Within this class of materials, it has been previously suggested that more polarizable anions and larger substituents should influence the ionic conductivity (e.g., substituting S by Se). Building upon this work, we explore the influence of Sn substitution in lithium argyrodites Li6+xSnxP1-xSe5I in direct comparison to the previously reported Li6+xSnxP1-xS5I series. The (P5+/Sn4+)Se43/4- polyhedral volume, unit cell volume, and lithium coordination tetrahedra Li(48h)-(S/Se)3-I increase with Sn substitution in this new selenide series. Impedance spectroscopy reveals that increasing Sn4+ substitution results in a fivefold improvement in the ionic conductivity when compared to Li6PSe5I. This work provides further understanding of compositional influences for optimizing the ionic conductivity of solid electrolytes.
Collapse
Affiliation(s)
- Ajay Gautam
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Michael Ghidiu
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Anna-Lena Hansen
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Saneyuki Ohno
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
| | - Wolfgang G Zeier
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149 Münster, Germany.,Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster, Forschungszentrum Jülich, 48149 Münster, Germany
| |
Collapse
|