1
|
Perez AR, Adewole A, Sihwa D, Colvin ME, Merg AD. Coiled Coil Peptide Tiles (CCPTs): Expanding the Peptide Building Block Design with Multivalent Peptide Macrocycles. J Am Chem Soc 2024. [PMID: 39454098 DOI: 10.1021/jacs.4c09531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Owing to their synthetic accessibility and protein-mimetic features, peptides represent an attractive biomolecular building block for the fabrication of artificial biomimetic materials with emergent properties and functions. Here, we expand the peptide building block design space through unveiling the design, synthesis, and characterization of novel, multivalent peptide macrocycles (96mers), termed coiled coil peptide tiles (CCPTs). CCPTs comprise multiple orthogonal coiled coil peptide domains that are separated by flexible linkers. The constraints, imposed by cyclization, confer CCPTs with the ability to direct programmable, multidirectional interactions between coiled coil-forming "edge" domains of CCPTs and their free peptide binding partners. These fully synthetic constructs are assembled using a convergent synthetic strategy via a combination of native chemical ligation and Sortase A-mediated cyclization. Circular dichroism (CD) studies reveal the increased helical stability associated with cyclization and subsequent coiled coil formation along the CCPT edges. Size-exclusion chromatography (SEC), analytical high-performance liquid chromatography (HPLC), and fluorescence quenching assays provide a comprehensive biophysical characterization of various assembled CCPT complexes and confirm the orthogonal colocalization between coiled coil domains within CCPTs and their designed on-target free peptide partners. Lastly, we employ molecular dynamics (MD) simulations, which provide molecular-level insights into experimental results, as a supporting method for understanding the structural dynamics of CCPTs and their complexes. MD analysis of the simulated CCPT architectures reveals the rigidification and expansion of CCPTs upon complexation, i.e., coiled coil formation with their designed binding partners, and provides insights for guiding the designs of future generations of CCPTs. The addition of CCPTs into the repertoire of coiled coil-based building blocks has the potential for expanding the coiled coil assembly landscape by unlocking new topologies having designable intermolecular interfaces.
Collapse
Affiliation(s)
- Anthony R Perez
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Adekunle Adewole
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Daphney Sihwa
- Quantitative and Systems Biology Graduate Program, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Michael E Colvin
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| |
Collapse
|
2
|
Aschmann D, Knol RA, Kros A. Lipid-Based Nanoparticle Functionalization with Coiled-Coil Peptides for In Vitro and In Vivo Drug Delivery. Acc Chem Res 2024; 57:1098-1110. [PMID: 38530194 PMCID: PMC11025025 DOI: 10.1021/acs.accounts.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
For the delivery of drugs, different nanosized drug carriers (e.g., liposomes, lipid nanoparticles, and micelles) have been developed in order to treat diseases that afflict society. Frequently, these vehicles are formed by the self-assembly of small molecules to encapsulate the therapeutic cargo of interest. Over decades, nanoparticles have been optimized to make them more efficient and specific to fulfill tailor-made tasks, such as specific cell targeting or enhanced cellular uptake. In recent years, lipid-based nanoparticles in particular have taken center stage; however, off-targeting side effects and poor endosomal escape remain major challenges since therapies require high efficacy and acceptable toxicity.To overcome these issues, many different approaches have been explored to make drug delivery more specific, resulting in reduced side effects, to achieve an optimal therapeutic effect and a lower required dose. The fate of nanoparticles is largely dependent on size, shape, and surface charge. A common approach to designing drug carriers with targeting capability is surface modification. Different approaches to functionalize nanoparticles have been investigated since the attachment of targeting moieties plays a significant role in whether they can later interact with surface-exposed receptors of cells. To this end, various strategies have been used involving different classes of biomolecules, such as small molecules, nucleic acids, antibodies, aptamers, and peptides.Peptides in particular are often used since there are many receptors overexpressed in different specific cell types. Furthermore, peptides can be produced and modified at a low cost, enabling high therapeutic screening. Cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs) are frequently used for this purpose. Less studied in this context are fusogenic coiled-coil peptides. Lipid-based nanoparticles functionalized with these peptides are able to avoid the endolysosomal pathway; instead such particles can be taken up by membrane fusion, resulting in increased delivery of payload. Furthermore, they can be used for targeting cells/organs but are not directed at surface-exposed receptors. Instead, they recognize complementary peptide sequences, facilitating their uptake into cells.In this Account, we will discuss peptides as moieties for enhanced cytosolic delivery, targeted uptake, and how they can be attached to lipid-based nanoparticles to alter their properties. We will discuss the properties imparted to the particles by peptides, surface modification approaches, and recent examples showing the power of peptides for in vitro and in vivo drug delivery. The main focus will be on the functionalization of lipid-based nanoparticles by fusogenic coiled-coil peptides, highlighting the relevance of this concept for the development of future therapeutics.
Collapse
Affiliation(s)
- Dennis Aschmann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Renzo A. Knol
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
3
|
Delort A, Cottone G, Malliavin TE, Müller MM. Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle. Int J Mol Sci 2024; 25:2481. [PMID: 38473729 DOI: 10.3390/ijms25052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic Twister model are used to investigate the consequences of this proposition for the toxin-membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water-ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the Twister model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed.
Collapse
Affiliation(s)
| | - Grazia Cottone
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, 90128 Palermo, Italy
| | | | | |
Collapse
|
4
|
Perez AR, Lee Y, Colvin ME, Merg AD. Interhelical E@g-N@a interactions modulate coiled coil stability within a de novo set of orthogonal peptide heterodimers. J Pept Sci 2024; 30:e3540. [PMID: 37690796 DOI: 10.1002/psc.3540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
The designability of orthogonal coiled coil (CC) dimers, which draw on well-established design rules, plays a pivotal role in fueling the development of CCs as synthetically versatile assembly-directing motifs for the fabrication of bionanomaterials. Here, we aim to expand the synthetic CC toolkit through establishing a "minimalistic" set of orthogonal, de novo CC peptides that comprise 3.5 heptads in length and a single buried Asn to prescribe dimer formation. The designed sequences display excellent partner fidelity, confirmed via circular dichroism (CD) spectroscopy and Ni-NTA binding assays, and are corroborated in silico using molecular dynamics (MD) simulation. Detailed analysis of the MD conformational data highlights the importance of interhelical E@g-N@a interactions in coordinating an extensive 6-residue hydrogen bonding network that "locks" the interchain Asn-Asn' contact in place. The enhanced stability imparted to the Asn-Asn' bond elicits an increase in thermal stability of CCs up to ~15°C and accounts for significant differences in stability within the collection of similarly designed orthogonal CC pairs. The presented work underlines the utility of MD simulation as a tool for constructing de novo, orthogonal CCs, and presents an alternative handle for modulating the stability of orthogonal CCs via tuning the number of interhelical E@g-N@a contacts. Expansion of CC design rules is a key ingredient for guiding the design and assembly of more complex, intricate CC-based architectures for tackling a variety of challenges within the fields of nanomedicine and bionanotechnology.
Collapse
Affiliation(s)
- Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Yumie Lee
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Michael E Colvin
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| |
Collapse
|
5
|
Zeng Y, Estapé Senti M, Labonia MCI, Papadopoulou P, Brans MAD, Dokter I, Fens MH, van Mil A, Sluijter JPG, Schiffelers RM, Vader P, Kros A. Fusogenic Coiled-Coil Peptides Enhance Lipid Nanoparticle-Mediated mRNA Delivery upon Intramyocardial Administration. ACS NANO 2023; 17:23466-23477. [PMID: 37982378 PMCID: PMC10722601 DOI: 10.1021/acsnano.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Heart failure is a serious condition that results from the extensive loss of specialized cardiac muscle cells called cardiomyocytes (CMs), typically caused by myocardial infarction (MI). Messenger RNA (mRNA) therapeutics are emerging as a very promising gene medicine for regenerative cardiac therapy. To date, lipid nanoparticles (LNPs) represent the most clinically advanced mRNA delivery platform. Yet, their delivery efficiency has been limited by their endosomal entrapment after endocytosis. Previously, we demonstrated that a pair of complementary coiled-coil peptides (CPE4/CPK4) triggered efficient fusion between liposomes and cells, bypassing endosomal entrapment and resulting in efficient drug delivery. Here, we modified mRNA-LNPs with the fusogenic coiled-coil peptides and demonstrated efficient mRNA delivery to difficult-to-transfect induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). As proof of in vivo applicability of these fusogenic LNPs, local administration via intramyocardial injection led to significantly enhanced mRNA delivery and concomitant protein expression. This represents the successful application of the fusogenic coiled-coil peptides to improve mRNA-LNPs transfection in the heart and provides the potential for the advanced development of effective regenerative therapies for heart failure.
Collapse
Affiliation(s)
- Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mariona Estapé Senti
- CDL
Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - M. Clara I. Labonia
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Maike A. D. Brans
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Inge Dokter
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative
Medicine Center Utrecht, University Utrecht,
University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marcel H. Fens
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Alain van Mil
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative
Medicine Center Utrecht, University Utrecht,
University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative
Medicine Center Utrecht, University Utrecht,
University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | | | - Pieter Vader
- CDL
Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department
of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
Creyer MN, Retout M, Jin Z, Yim W, Jokerst JV. Ligation of Gold Nanoparticles with Self-Assembling, Coiled-Coil Peptides. J Phys Chem B 2023; 127:8009-8018. [PMID: 37683185 DOI: 10.1021/acs.jpcb.3c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The surface of gold nanoparticles (AuNPs) can be conjugated with a wide range of highly functional biomolecules. A common pitfall when utilizing AuNPs is their tendency to aggregate, especially when their surface is functionalized with ligands of low molecular weight (no steric repulsion) or ligands of neutral charge (no electrostatic repulsion). For biomedical applications, AuNPs that are colloidally stable are desirable because they have a high surface area and thus reactivity, resist sedimentation, and exhibit uniform optical properties. Here, we engineer the surface of AuNPs so that they remain stable when decorated with coiled-coil (CC) peptides while preserving the native polypeptide properties. We achieve this by using a neutral, mixed ligand layer composed of lipoic acid poly(ethylene glycol) and lipoic acid poly(ethylene glycol) maleimide to attach the CCs. Tuning the surface fraction of each component within the mixed ligand layer also allowed us to control the degree of AuNP labeling with CCs. We demonstrate the dynamic surface properties of these CC-AuNPs by performing a place-exchange reaction and their utility by designing an energy-transfer-based caspase-3 sensor. Overall, this study optimizes the surface chemistry of AuNPs to quantitatively present functional biomolecules while maintaining colloid stability.
Collapse
Affiliation(s)
- Matthew N Creyer
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano and Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Zeng Y, Shen M, Singhal A, Sevink GJA, Crone N, Boyle AL, Kros A. Enhanced Liposomal Drug Delivery Via Membrane Fusion Triggered by Dimeric Coiled-Coil Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301133. [PMID: 37199140 DOI: 10.1002/smll.202301133] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Indexed: 05/19/2023]
Abstract
An ideal nanomedicine system improves the therapeutic efficacy of drugs. However, most nanomedicines enter cells via endosomal/lysosomal pathways and only a small fraction of the cargo enters the cytosol inducing therapeutic effects. To circumvent this inefficiency, alternative approaches are desired. Inspired by fusion machinery found in nature, synthetic lipidated peptide pair E4/K4 is used to induce membrane fusion previously. Peptide K4 interacts specifically with E4, and it has a lipid membrane affinity and resulting in membrane remodeling. To design efficient fusogens with multiple interactions, dimeric K4 variants are synthesized to improve fusion with E4-modified liposomes and cells. The secondary structure and self-assembly of dimers are studied; the parallel PK4 dimer forms temperature-dependent higher-order assemblies, while linear K4 dimers form tetramer-like homodimers. The structures and membrane interactions of PK4 are supported by molecular dynamics simulations. Upon addition of E4, PK4 induced the strongest coiled-coil interaction resulting in a higher liposomal delivery compared to linear dimers and monomer. Using a wide spectrum of endocytosis inhibitors, membrane fusion is found to be the main cellular uptake pathway. Doxorubicin delivery results in efficient cellular uptake and concomitant antitumor efficacy. These findings aid the development of efficient delivery systems of drugs into cells using liposome-cell fusion strategies.
Collapse
Affiliation(s)
- Ye Zeng
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mengjie Shen
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ankush Singhal
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Geert Jan Agur Sevink
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Niek Crone
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Aimee L Boyle
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
8
|
Soprano E, Migliavacca M, López-Ferreiro M, Pelaz B, Polo E, Del Pino P. Fusogenic Cell-Derived nanocarriers for cytosolic delivery of cargo inside living cells. J Colloid Interface Sci 2023; 648:488-496. [PMID: 37302232 DOI: 10.1016/j.jcis.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
A surface-engineered cell-derived nanocarrier was developed for efficient cytosolic delivery of encapsulated biologically active molecules inside living cells. Thus, a combination of aromatic-labeled and cationic lipids, instrumental in providing fusogenic properties, was intercalated into the biomimetic shell of self-assembled nanocarriers formed from cell membrane extracts. The nanocarriers were loaded, as a proof of concept, with either bisbenzimide molecules, a fluorescently labeled dextran polymer, the bicyclic heptapeptide phalloidin, fluorescently labeled polystyrene nanoparticles or a ribonucleoprotein complex (Cas9/sgRNA). The demonstrated nanocarrieŕs fusogenic behavior relies on the fusogen-like properties imparted by the intercalated exogenous lipids, which allows for circumventing lysosomal storage, thereby leading to efficient delivery into the cytosolic milieu where cargo regains function.
Collapse
Affiliation(s)
- Enrica Soprano
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain
| | - Martina Migliavacca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain
| | - Miriam López-Ferreiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela. Rúa Jenaro de la Fuente s/n, 15705 Santiago de Compostela Spain.
| |
Collapse
|
9
|
Canepa E, Bochicchio D, Brosio G, Silva PHJ, Stellacci F, Dante S, Rossi G, Relini A. Cholesterol-Containing Liposomes Decorated With Au Nanoparticles as Minimal Tunable Fusion Machinery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207125. [PMID: 36899445 DOI: 10.1002/smll.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Indexed: 06/08/2023]
Abstract
Membrane fusion is essential for the basal functionality of eukaryotic cells. In physiological conditions, fusion events are regulated by a wide range of specialized proteins, operating with finely tuned local lipid composition and ionic environment. Fusogenic proteins, assisted by membrane cholesterol and calcium ions, provide the mechanical energy necessary to achieve vesicle fusion in neuromediator release. Similar cooperative effects must be explored when considering synthetic approaches for controlled membrane fusion. We show that liposomes decorated with amphiphilic Au nanoparticles (AuLips) can act as minimal tunable fusion machinery. AuLips fusion is triggered by divalent ions, while the number of fusion events dramatically changes with, and can be finely tuned by, the liposome cholesterol content. We combine quartz-crystal-microbalance with dissipation monitoring (QCM-D), fluorescence assays, and small-angle X-ray scattering (SAXS) with molecular dynamics (MD) at coarse-grained (CG) resolution, revealing new mechanistic details on the fusogenic activity of amphiphilic Au nanoparticles (AuNPs) and demonstrating the ability of these synthetic nanomaterials to induce fusion regardless of the divalent ion used (Ca2+ or Mg2+ ). The results provide a novel contribution to developing new artificial fusogenic agents for next-generation biomedical applications that require tight control of the rate of fusion events (e.g., targeted drug delivery).
Collapse
Affiliation(s)
- Ester Canepa
- Department of Physics, University of Genoa, Genoa, 16146, Italy
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | | | - Giorgia Brosio
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | | | - Francesco Stellacci
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Silvia Dante
- Institute of Materials Science & Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Giulia Rossi
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa, 16146, Italy
| |
Collapse
|
10
|
Hakata Y, Yamashita K, Hashimoto S, Ohtsuki T, Miyazawa M, Kitamatsu M. Adjusting Heterodimeric Coiled-Coils (K/E Zipper) to Connect Autophagy-Inducing Peptide with Cell-Penetrating Peptide. Pharmaceutics 2023; 15:pharmaceutics15041048. [PMID: 37111533 PMCID: PMC10141234 DOI: 10.3390/pharmaceutics15041048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
A connection of a functional peptide with a cell-penetrating peptide (CPP) used a heterodimeric coiled-coil as a molecular zipper can improve the intracellular delivery and activity of the functional peptide. However, the chain length of the coiled coil required for functioning as the molecular zipper is unknown at present. To solve the problem, we prepared an autophagy-inducing peptide (AIP) that conjugates with the CPP via heterodimeric coiled-coils consisting of 1 to 4 repeating units (K/E zipper; AIP-Kn and En-CPP), and we investigated the optimum length of the K/E zipper for effective intracellular delivery and autophagy induction. Fluorescence spectroscopy showed that K/E zippers with n = 3 and 4 formed a stable 1:1 hybrid (AIP-K3/E3-CPP and AIP-K4/E4-CPP, respectively). Both AIP-K3 and AIP-K4 were successfully delivered into cells by the corresponding hybrid formation with K3-CPP and K4-CPP, respectively. Interestingly, autophagy was also induced by the K/E zippers with n = 3 and 4, more intensively by the former than by the latter. The peptides and K/E zippers used in this study did not show significant cytotoxicity. These results indicate that the effective induction of autophagy occurs via an exquisite balance of the association and dissociation of the K/E zipper in this system.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| | - Kazuma Yamashita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| | - Sonoko Hashimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan
| |
Collapse
|
11
|
Wehrum S, Siukstaite L, Williamson DJ, Branson TR, Sych T, Madl J, Wildsmith GC, Dai W, Kempmann E, Ross JF, Thomsen M, Webb ME, Römer W, Turnbull WB. Membrane Fusion Mediated by Non-covalent Binding of Re-engineered Cholera Toxin Assemblies to Glycolipids. ACS Synth Biol 2022; 11:3929-3938. [PMID: 36367814 PMCID: PMC9764410 DOI: 10.1021/acssynbio.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.
Collapse
Affiliation(s)
- Sarah Wehrum
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Lina Siukstaite
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Daniel J. Williamson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Thomas R. Branson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Taras Sych
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Josef Madl
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Gemma C. Wildsmith
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Wenyue Dai
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Erik Kempmann
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - James F. Ross
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Maren Thomsen
- School of
Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Michael E. Webb
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Winfried Römer
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..,
| |
Collapse
|
12
|
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022; 12:biom12121779. [PMID: 36551207 PMCID: PMC9776023 DOI: 10.3390/biom12121779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Collapse
Affiliation(s)
- Mikhail Khvotchev
- Department of Biochemistry, Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (M.K.); (M.S.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence: (M.K.); (M.S.)
| |
Collapse
|
13
|
Fehér B, Gascoigne L, Giezen SN, Voets IK. Impact of arginine modified SNARE peptides on interactions with phospholipid bilayers and coiled-coil formation: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|