1
|
Wu W, Rajeshkumar T, Hong D, Zhu S, Huang Z, Chai F, Wang W, Yuan Q, Wei Y, Xie Z, Maron L, Wang S. Rare-Earth Metal Complexes Bearing Electrophilic Carbon and Strongly Polarized Metallacyclopropane Moiety: Synthesis and Diverse Reactivity toward Small Molecules. Inorg Chem 2024; 63:18365-18378. [PMID: 39287929 DOI: 10.1021/acs.inorgchem.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metallacyclopropanes are highly strained and very reactive organometallics; the rare-earth metal complexes bearing both highly reactive electrophilic carbon and strongly polarized metallacyclopropanes are extremely rare. This type of rare-earth metal complexes (κ2-L)RE(η2-C2B10H10)·(THF)3 [L = 1-(2-N-C5H10NCH2CH2)-3-(2,6-iPr2C6H3N═CH)-C8H4N, RE = Lu(1a), Yb(1b), Er(1c), Y(1d), Dy(1e)] bearing the indol-2-yl electrophilic carbon and carboryne-based strongly polarized metallacyclopropanes have been synthesized. Structures of complexes 1 are further confirmed by single-crystal X-ray diffraction and DFT theoretical calculations. It is found that complexes 1 have remarkable reactivity toward different polar unsaturated small molecules, elemental sulfur, and selenium to provide different products (2-15) through the selective reactions of the RE-Ccage, and RE-C2-ind bonds with the given small molecules, respectively. The reactivities of these complexes are different from those of the reported rare-earth metallacyclopropenes and d-block metal-carborynes.
Collapse
Affiliation(s)
- Weikang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Shan Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Zeming Huang
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, P. R. China
| | - Fuxiang Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Weigang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Zuowei Xie
- Department of Chemistry, The Chinese University of Hong Kong, Shatin NT, Hong Kong 999077, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Shaowu Wang
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
3
|
Abstract
Carborynes (1,2-dehydro-o-carborane and 1,3-dehydro-o-carborane), three-dimensional analogues of benzyne, can be generated in situ from the precursors 1-X-2-Li-1,2-C2B10H10 (X = Br, I, OTs, OTf), or 1-Me3Si-2-[IPh(OAc)]-1,2-C2B10H10 or [1-Li-3-N2-1,2-C2B10H10][BF4]. They are a class of very useful synthons for the synthesis of a large variety of functionalized carborane derivatives for potential application in medicine, materials science and organometallic/coordination chemistry. The experimental data demonstrate that there is a correspondence between the reactions of carborynes and those of benzyne with alkenes, dienes, alkynes, aromatics or heteroaromatics in a pericyclic reaction fashion. On the other hand, carborynes have unique properties of their own owing to their steric/electronic features. They undergo regioselective sp2/sp3 C-H bond and N-Li bond insertion reactions, which has not been observed for benzyne. This review provides a comprehensive overview of recent advances in this interesting research field with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong, China.
| |
Collapse
|
4
|
Liu J, Fu D, Chen Z, Li T, Qu LB, Li SJ, Zhang W, Lan Y. Regioselectivity of Pd-catalyzed o-carborane arylation: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00046f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B(3)-Arylation is unfavorable because the steric repulsion between the substituent group on C(2) and the metal moiety would lead to significant distortion of o-carborane and would result in a higher activation energy for reductive elimination.
Collapse
Affiliation(s)
- Jiying Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tiantian Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
5
|
Zhang J, Xie Z. Ene Reaction of o-Carboryne with Alkynes and Alkenes at Room Temperature: Synthesis of o-Carboranyl Allenes and Alkenes. Org Lett 2021; 23:2971-2975. [PMID: 33797268 DOI: 10.1021/acs.orglett.1c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
o-Carboryne undergoes at room temperature an efficient ene reaction with a large variety of alkynes and alkenes possessing an α-CH proton to give a series of o-carboranyl allenes and alkenes in good to high isolated yields. This reaction has a broad substrate scope from alkyl and aryl to silyl substituents. This protocol provides a facile synthetic method for accessing cage C-substituted carboranyl allenes and alkenes, which may be utilized as useful starting materials to synthesize multifunctionalized carboranes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|