1
|
Chen BH, Xia QS, Li J, Cai GX, Wang Q. Enhancing the Encapsulation Performances of Liposomes for Amphiphilic Copolymers by Computer Simulations. J Phys Chem B 2024; 128:11481-11491. [PMID: 39504498 DOI: 10.1021/acs.jpcb.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Liposomes, which encapsulate drugs into an inner aqueous core and demonstrate high drug-loading capacity, have attracted considerable interest in the field of drug delivery. Herein, the encapsulation processes for amphiphilic copolymers within liposomes have been investigated systematically to enhance the encapsulation capacity and optimize the structures using dissipative particle dynamics simulations. The results indicate that the physicochemical properties of lipids, receptors, and amphiphilic copolymers collectively determine the encapsulation behaviors of liposomes. Adjusting the hydrophobic interaction between hydrophobic tails of lipids (receptors) and hydrophobic blocks of copolymers, along with modulating the specific interaction between ligands and the functional head groups of receptors, can lead to various encapsulation capacities. Significantly, a medium hydrophobic interaction strength or a strong specific interaction is conducive to achieving a higher degree of encapsulation for amphiphilic copolymers. Furthermore, varying the key parameters, such as the hydrophobic interaction, the specific interaction, as well as the concentrations of lipids and receptors, can induce seven typical aggregate structures: heterogeneous, fully encapsulated, partially encapsulated, saturated-encapsulated, unsaturated-encapsulated, multilamellar, and column-like structures. The final phase diagrams are also constructed to provide a guideline for designing various structures of liposomes encapsulated with amphiphilic copolymers. These results significantly contribute to the illumination of strategies for the rational construction of the self-assembly system that facilitates the efficient encapsulation of amphiphilic copolymers within the inner aqueous core of liposomes, thereby providing valuable insights into the optimal design of liposome carriers for future biomedical applications.
Collapse
Affiliation(s)
- Bo-Han Chen
- School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
| | - Qiang-Sheng Xia
- School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
| | - Juan Li
- School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
| | - Gai-Xiang Cai
- School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
| | - Qiang Wang
- School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
2
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Chen X, Li Z, Yang C, Yang D. Ionic liquids as the effective technology for enhancing transdermal drug delivery: Design principles, roles, mechanisms, and future challenges. Asian J Pharm Sci 2024; 19:100900. [PMID: 38590797 PMCID: PMC10999516 DOI: 10.1016/j.ajps.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2024] Open
Abstract
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Zhou J, Tang H, Wang R. Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution. J Phys Chem B 2024; 128:2841-2852. [PMID: 38452254 DOI: 10.1021/acs.jpcb.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.
Collapse
Affiliation(s)
- Junwei Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Xu W, Tao Y, Xu H, Wen J. Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Phys Chem Chem Phys 2024; 26:4828-4839. [PMID: 38235540 DOI: 10.1039/d3cp05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Over the past few decades, molecular machines have been extensively studied, since they are composed of single molecules for functional materials capable of responding to external stimuli, enabling motion at scales ranging from the microscopic to the macroscopic level within molecular aggregates. This advancement holds the potential to efficiently transform external resources into mechanical movement, achieved through precise control of conformational changes in stimuli-responsive materials. However, the underlying mechanism that links microscopic and macroscopic motions remains unclear, demanding computational development associated with simulating the construction of molecular machines from single molecules. This bottleneck has impeded the design of more efficient functional materials. Advancements in theoretical simulations have successfully been developed in various computational models to unveil the operational mechanisms of stimulus-responsive molecular machines, which could help us reduce the costs in experimental trial-and-error procedures. It opens doors to the computer-aided design of innovative functional materials. In this perspective, we have reviewed theoretical approaches employed in simulating dynamic processes involving conformational changes in molecular machines, spanning different scales and environmental conditions. In addition, we have highlighted current challenges and anticipated future trends in the collective control of aggregates within molecular machines. Our goal is to provide a comprehensive overview of recent theoretical advancements in the field of molecular machines, offering valuable insights for the design of novel smart materials.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanda Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Singh AK, Banerjee V. Phase separation of a magnetic fluid: Asymptotic states and nonequilibrium kinetics. Phys Rev E 2023; 108:064604. [PMID: 38243485 DOI: 10.1103/physreve.108.064604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
We study self-assembly in a colloidal suspension of magnetic particles by performing comprehensive molecular dynamics simulations of the Stockmayer (SM) model, which comprises spherical particles decorated by a magnetic moment. The SM potential incorporates dipole-dipole interactions along with the usual Lennard-Jones interaction and exhibits a gas-liquid phase coexistence observed experimentally in magnetic fluids. When this system is quenched from the high-temperature homogeneous phase to the coexistence region, the nonequilibrium evolution to the condensed phase proceeds with the development of spatial as well as magnetic order. We observe density-dependent coarsening mechanisms-a diffusive growth law ℓ(t)∼t^{1/3} in the nucleation regime and hydrodynamics-driven inertial growth law ℓ(t)∼t^{2/3} in the spinodal regimes. [ℓ(t) is the average size of the condensate at time t after the quench.] While the spatial growth is governed by the expected conserved order parameter dynamics, the growth of magnetic order in the spinodal regime exhibits unexpected nonconserved dynamics. The asymptotic morphologies have density-dependent shapes which typically include the isotropic sphere and spherical bubble morphologies in the nucleation region, and the anisotropic cylinder, planar slab, cylindrical bubble morphologies in the spinodal region. The structures are robust and nonvolatile, and exhibit characteristic magnetic properties. For example, the oppositely magnetized hemispheres in the spherical morphology impart the characteristics of a Janus particle to it. The observed structures have versatile applications in catalysis, drug delivery systems, memory devices, and magnetic photonic crystals, to name a few.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
K V S C, Singeetham PK, Thampi SP. Active compound particles in a quadratic flow: hydrodynamics and morphology. SOFT MATTER 2023; 19:7963-7978. [PMID: 37818659 DOI: 10.1039/d3sm01225e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Generating core-shell particles with a well-controlled morphology is of great interest due to the interdependence between the morphology and different properties of these structures. These particles are often generated in microfluidic devices in a background quadratic flow. Therefore, in this study, we investigate the hydrodynamics and morphology of a concentric active compound particle, an active particle encapsulated in a fluid droplet, in an imposed quadratic flow. Governing equations for fluid flow are analytically solved in the inertia-less limit assuming that the surface tension force dominates the viscous forces (capillary number, Ca ≪ 1). Poiseuille flow deforms the compound particle into a three-lobe structure governed by the hexapolar component of the Poiseuille flow. Activity deforms the compound particle into a prolate shape owing to the velocity field of a force dipole. For an active compound particle in a Poiseuille flow, morphology is sensitive to the orientations and relative strengths of the activity and Poiseuille flow. Primarily, the presence of activity breaks the three-lobe symmetry of the drop shape and makes it more asymmetric and elongated. Moreover, the active compound particle becomes more susceptible to breakup in a quadratic flow when (i) the strength of activity is much stronger than the imposed flow strength, (ii) the active particle is oriented along the symmetry axes of the quadratic flow, (iii) the size ratio of the confining droplet to the encapsulated active particle is small and (iv) the viscosity ratio of the outer fluid to the inner fluid is small. Finally, we demonstrate that imposing the pulsatile quadratic flow prevents the breakup of an active compound particle during its generation and transport, and further assists in tuning the morphology.
Collapse
Affiliation(s)
- Chaithanya K V S
- School of Science and Engineering (Physics), University of Dundee, Dundee, DD14HN, UK.
| | - Pavan Kumar Singeetham
- Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-64, India.
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-36, India.
| |
Collapse
|
8
|
Zhang H, Pan Y, Li Y, Tang C, Xu Z, Li C, Xu F, Mai Y. Hybrid Polymer Vesicles: Controllable Preparation and Potential Applications. Biomacromolecules 2023; 24:3929-3953. [PMID: 37579246 DOI: 10.1021/acs.biomac.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hybrid polymer vesicles contain functional nanoparticles (NPs) in their walls, interfaces, coronae, or cavities. NPs render the hybrid vesicles with specific physical properties, while polymers endow them with structural stability and may significantly reduce the high toxicity of NPs. Therefore, hybrid vesicles integrate fascinating multifunctions from both NPs and polymeric vesicles, which have gained tremendous attention because of their diverse promising applications. Various types of delicate hybrid polymeric vesicles with size control and tunable localization of NPs in different parts of vesicles have been constructed via in situ and ex situ strategies, respectively. Their potential applications have been widely explored, as well. This review presents the progress of block copolymer (BCP) vesicle systems containing different types of NPs including metal NPs, magnetic NPs, and semiconducting quantum dots (QDs), etc. The strategies for controlling the location of NPs within hybrid vesicles are discussed. Typical potential applications of the elegant hybrid vesicles are also highlighted.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Yang D, Li Z, Zhang Y, Chen X, Liu M, Yang C. Design of Dual-Targeted pH-Sensitive Hybrid Polymer Micelles for Breast Cancer Treatment: Three Birds with One Stone. Pharmaceutics 2023; 15:1580. [PMID: 37376029 DOI: 10.3390/pharmaceutics15061580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer has a high prevalence in the world and creates a substantial socio-economic impact. Polymer micelles used as nano-sized polymer therapeutics have shown great advantages in treating breast cancer. Here, we aim to develop a dual-targeted pH-sensitive hybrid polymer (HPPF) micelles for improving the stability, controlled-release ability and targeting ability of the breast cancer treatment options. The HPPF micelles were constructed using the hyaluronic acid modified polyhistidine (HA-PHis) and folic acid modified Plannick (PF127-FA), which were characterized via 1H NMR. The optimized mixing ratio (HA-PHis:PF127-FA) was 8:2 according to the change of particle size and zeta potential. The stability of HPPF micelles were enhanced with the higher zeta potential and lower critical micelle concentration compared with HA-PHis and PF127-FA. The drug release percents significantly increased from 45% to 90% with the decrease in pH, which illustrated that HPPF micelles were pH-sensitive owing to the protonation of PHis. The cytotoxicity, in vitro cellular uptake and in vivo fluorescence imaging experiments showed that HPPF micelles had the highest targeting ability utilizing FA and HA, compared with HA-PHis and PF127-FA. Thus, this study constructs an innovative nano-scaled drug delivery system, which provides a new strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Yinghui Zhang
- Department of Pharmaceutical Sciences, Jiamusi University, 258 Xuefu Road, Jiamusi 154007, China
| | - Xuejun Chen
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | - Mingyuan Liu
- Department of Pharmaceutical Sciences, Jiamusi University, 258 Xuefu Road, Jiamusi 154007, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
10
|
Budamagunta V, Shameem N, Irusappan S, Parray JA, Thomas M, Marimuthu S, Kirubakaran R, Arul Jothi KN, Sayyed RZ, Show PL. Nanovesicle and extracellular polymeric substance synthesis from the remediation of heavy metal ions from soil. ENVIRONMENTAL RESEARCH 2023; 219:114997. [PMID: 36529326 DOI: 10.1016/j.envres.2022.114997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal toxicity affects aquatic plants and animals, disturbing biodiversity and ecological balance causing bioaccumulation of heavy metals. Industrialization and urbanization are inevitable in modern-day life, and control and detoxification methods need to be accorded to meet the hazardous environment. Microorganisms and plants have been widely used in the bioremediation of heavy metals. Sporosarcina pasteurii, a gram-positive bacterium that is widely known for its calcite precipitation property in bio-cementing applications has been explored in the study for its metal tolerance ability for the first time. S. pasteurii SRMNP1 (KF214757) can tolerate silver stress to form nanoparticles and can remediate multiple heavy metals to promote the growth of various plants. This astounding property of the isolate warranted extensive examinations to comprehend the physiological changes during an external heavy metal stress condition. The present study aimed to understand various physiological responses occurring in S. pasteuriiSRMNP1 during the metal tolerance phenomenon using electron microscopy. The isolate was subjected to heavy metal stress, and a transmission electron microscope examination was used to analyze the physiological changes in bacteria to evade the metal stress. S. pasteurii SRMNP1 was tolerant against a wide range of heavy metal ions and can withstand a broad pH range (5-9). Transmission Electron Microscopy (TEM) examination of S. pasteurii SRMNP1 followed by 5 mM nickel sulfate treatment revealed the presence of nanovesicles encapsulating nanosized particles in intra and extracellular spaces. This suggests that the bacteria evade the metal stress by converting the metal ions into nanosized particles and encapsulating them within nanovesicles to efflux them through the vesicle budding mechanism. Moreover, the TEM images revealed an excessive secretion of extracellular polymeric substances by the strain to discharge the metal particles outside the bacterial system. S. pasteurii can be foreseen as an effective bioremediation agent with the potential to produce nanosized particles, nanovesicles, and extracellular polymeric substances. This study provides physiological evidence that, besides calcium precipitation applications, S. pasteurii can further be explored for its multidimensional roles in the fields of drug delivery and environmental engineering.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar 190001, India.
| | - Sivaraj Irusappan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Javid A Parray
- Department of Environmental Science, HKM Government Degree College Eidgah, Jammu and Kashmir 190017, India.
| | - Merin Thomas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | | | - Rangasamy Kirubakaran
- Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation, Salem, India.
| | - K N Arul Jothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Feng X, Wu C, Yang W, Wu J, Wang P. Mechanism-Based Sonodynamic–Chemo Combinations against Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23147981. [PMID: 35887326 PMCID: PMC9315679 DOI: 10.3390/ijms23147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Due to its noninvasive nature, site-confined irradiation, and high tissue penetrating capabilities, ultrasound (US)-driven sonodynamic treatment (SDT) has been proven to have broad application possibilities in neoplastic and non-neoplastic diseases. However, the inefficient buildup of sonosensitizers in the tumor site remarkably impairs SDT efficiency. The present work proposes a deep-penetrating sonochemistry nanoplatform (Pp18-lipos@SRA737&DOX, PSDL) comprising Pp18 liposomes (Pp18-lipos, Plipo), SRA737 (a CHK1 inhibitor), and doxorubicin (DOX) for the controlled formation of reactive oxygen species (ROS) and release of DOX and SRA737 upon US activation, therefore increasing chemotherapeutic effectiveness and boosting SDT efficacy. Therein, the antitumor activities of DOX have been attributed to its intercalation into the nucleus DNA and induction of cell apoptosis. CHK1 evolved to respond to DNA damage and repair the damage via cell cycle progression. SRA737 is a potent and orally bioavailable clinical drug candidate for inhibiting CHK1, demonstrating adjuvant anticancer effect in vitro and in vivo. It was interesting to find that SRA737 carried into Plipo@DOX could significantly alleviate G2/M cell cycle arrest and aggravate DNA double-strand injuries, resulting in significant cell death. The developed US-switchable nanosystem provides a promising strategy for augmenting sono-chemotherapy against breast cancer controllably and precisely.
Collapse
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Chen Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Wenhao Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Jiayi Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: ; Tel.: +86-029-85310275
| |
Collapse
|
12
|
Gong F, Du N, Hou W. Vesicle formation of single-tailed amphiphilic alkyltrimethylammonium bromides in water induced by dehydration-rehydration. SOFT MATTER 2022; 18:2072-2081. [PMID: 35199818 DOI: 10.1039/d1sm01753e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We recently found that rough glass surfaces (RGSs) can in situ mediate the micelle-to-vesicle transition in single-component solutions of simple single-tailed amphiphiles (STAs), but only result in a relatively small number of vesicles coexisting with a large number of micelles. In the current work, a dehydration-rehydration (DHRH) method was used to induce the formation of vesicles in the single-component aqueous solutions of alkyltrimethylammonium bromides (CnTABs, n = 12, 14, and 16), a kind of typical cationic STAs. That is, a CnTAB micelle solution dropped on smooth glass surfaces (SGSs) was first dried, and the dried CnTAB aggregates were then rehydrated in a monomer solution of CnTAB. A large population of vesicles and even pure vesicle (or vesicle-dominated) systems were obtained, indicating that the DHRH process could more effectively induce the formation of STA vesicles than RGS in situ mediation. The so-obtained vesicles were characterized using DLS, FF-/cryo-TEM, AFM, SAXS, and fluorescence techniques, and their stability was determined. In addition, the effects of the conditions of DHRH and the chain length of CnTABs on the vesicle formation were examined. It was demonstrated that the vesicles can be formed as long as the concentrations of CnTABs in the rehydrated systems are higher than their critical micelle concentrations. The size and wall thickness of vesicles increase with an increase in chain length. A possible mechanism for the DHRH-induced vesicle formation is proposed: bilayer sheets are formed on SGSs during dehydration, and then detached from the SGSs to form vesicles during rehydration. A highly interdigitated structure of alkyl chains between two leaflets was identified in the bilayers, which probably is the origin of the formation and stability of STA vesicles.
Collapse
Affiliation(s)
- Feixue Gong
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, 250100, P. R. China.
- National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Aldarondo D, Wayne E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv Drug Deliv Rev 2022; 182:114116. [PMID: 35085623 PMCID: PMC9359644 DOI: 10.1016/j.addr.2022.114116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Due to the increasing population of individuals with cardiovascular diseases and related comorbidities, there is an increasing need for development of synergistic therapeutics. Monocytes are implicated in a broad spectrum of diseases and can serve as a focal point for therapeutic targeting. This review discusses the role of monocytes in cardiovascular diseases and highlights trends in monocyte targets nanoparticles in three cardiovascular-related diseases: Diabetes, Atherosclerosis, and HIV. Finally, the review offers perspectives on how to develop nanoparticle monocyte targeting strategies that can be beneficial for treating co-morbidities.
Collapse
Affiliation(s)
- Dasia Aldarondo
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Elizabeth Wayne
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Cumming J, Deane OJ, Armes SP. Reversible Addition-Fragmentation Chain Transfer Aqueous Dispersion Polymerization of 4-Hydroxybutyl Acrylate Produces Highly Thermoresponsive Diblock Copolymer Nano-Objects. Macromolecules 2022; 55:788-798. [PMID: 35431331 PMCID: PMC9007527 DOI: 10.1021/acs.macromol.1c02431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Indexed: 02/08/2023]
Abstract
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a poly(glycerol monomethacrylate) (PGMA) precursor is an important prototypical example of polymerization-induced self-assembly. 4-Hydroxybutyl acrylate (HBA) is a structural isomer of HPMA, but the former monomer exhibits appreciably higher aqueous solubility. For the two corresponding homopolymers, PHBA is more weakly hydrophobic than PHPMA. Moreover, PHBA has a significantly lower glass transition temperature (T g) so it exhibits much higher chain mobility than PHPMA at around ambient temperature. In view of these striking differences, we have examined the RAFT aqueous dispersion polymerization of HBA using a PGMA precursor with the aim of producing a series of PGMA57-300-PHBA100-1580 diblock copolymer nano-objects by systematic variation of the mean degree of polymerization of each block. A pseudo-phase diagram is constructed using transmission electron microscopy to assign the copolymer morphology after employing glutaraldehyde to cross-link the PHBA chains and hence prevent film formation during grid preparation. The thermoresponsive character of the as-synthesized linear nano-objects is explored using dynamic light scattering and temperature-dependent rheological measurements. Comparison with the analogous PGMA x -PHPMA y formulation is made where appropriate. In particular, we demonstrate that replacing the structure-directing PHPMA block with PHBA leads to significantly greater thermoresponsive behavior over a much wider range of diblock copolymer compositions. Given that PGMA-PHPMA worm gels can induce stasis in human stem cells (see Canton et al., ACS Central Science, 2016, 2, 65-74), our findings are likely to have implications for the design of next-generation PGMA-PHBA worm gels for cell biology applications.
Collapse
Affiliation(s)
- Juliana
M. Cumming
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
15
|
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021; 8:783831. [PMID: 34926557 PMCID: PMC8671830 DOI: 10.3389/fnut.2021.783831] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, owing to well-controlled release, enhanced distribution and increased permeability, nanocarriers used for alternative drug and food-delivery strategies have received increasingly attentions. Nanocarriers have attracted a large amount of interest as potential carriers of various bioactive molecules for multiple applications. Drug and food-based delivery via polymeric-based nanocarriers and lipid-based nanocarriers has been widely investigated. Nanocarriers, especially liposomes, are more and more widely used in the area of novel nano-pharmaceutical or food-based design. Herein, we aimed to discuss the recent advancement of different surface-engineered nanocarriers type, along with cutting-edge applications for food and nanomedicine and highlight the alternative of phytochemical as nanocarrier. Additionally, safety concern of nanocarriers was also highlighted.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Investigation of morphology, micelle properties, drug encapsulation and release behavior of self-assembled PEG-PLA-PEG block copolymers: A coarse-grained molecular simulations study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Corrêa RLGQ, dos Santos R, Albuquerque LJC, de Araujo GLB, Edwards-Gayle CJC, Ferreira FF, Costa FN. Ciprofibrate-Loaded Nanoparticles Prepared by Nanoprecipitation: Synthesis, Characterization, and Drug Release. Polymers (Basel) 2021; 13:3158. [PMID: 34578074 PMCID: PMC8468397 DOI: 10.3390/polym13183158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ciprofibrate (CIP) is a highly lipophilic and poorly water-soluble drug, typically used for dyslipidemia treatment. Although it is already commercialized in capsules, no previous studies report its solid-state structure; thus, information about the correlation with its physicochemical properties is lacking. In parallel, recent studies have led to the improvement of drug administration, including encapsulation in polymeric nanoparticles (NPs). Here, we present CIP's crystal structure determined by PXRD data. We also propose an encapsulation method for CIP in micelles produced from Pluronic P123/F127 and PEO-b-PCL, aiming to improve its solubility, hydrophilicity, and delivery. We determined the NPs' physicochemical properties by DLS, SLS, ELS, SAXS and the loaded drug amount by UV-Vis spectroscopy. Micelles showed sizes around 10-20 nm for Pluronic and 35-45 nm for the PEO-b-PCL NPs with slightly negative surface charge and successful CIP loading, especially for the latter; a substantial reduction in ζ-potential may be evidenced. For Pluronic nanoparticles, we scanned different conditions for the CIP loading, and its encapsulation efficiency was reduced while the drug content increased in the nanoprecipitation protocol. We also performed in vitro release experiments; results demonstrate that probe release is driven by Fickian diffusion for the Pluronic NPs and a zero-order model for PEO-b-PCL NPs.
Collapse
Affiliation(s)
| | - Renan dos Santos
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (R.d.S.); (L.J.C.A.); (F.F.F.)
| | - Lindomar José Calumby Albuquerque
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (R.d.S.); (L.J.C.A.); (F.F.F.)
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-170, Brazil
| | | | | | - Fabio Furlan Ferreira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (R.d.S.); (L.J.C.A.); (F.F.F.)
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | - Fanny Nascimento Costa
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, Brazil; (R.d.S.); (L.J.C.A.); (F.F.F.)
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| |
Collapse
|
18
|
Gao M, Du N, Yao Z, Li Y, Chen N, Hou W. Vesicle formation of single-chain amphiphilic 4-dodecylbenzene sulfonic acid in water and micelle-to-vesicle transition induced by wet-dry cycles. SOFT MATTER 2021; 17:2490-2499. [PMID: 33503106 DOI: 10.1039/d0sm02229b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple single-chain amphiphiles (SCAs) can form vesicular structures in their single-component aqueous solutions, which has attracted great attention, but the understanding of their aggregation behavior is still limited. In this work, the aggregation behavior of 4-dodecylbenzene sulfonic acid (DBSA), a typical simple SCA, in water was investigated. The structure and properties of the aggregates formed were determined. In particular, the effect of wet-dry cycles on the structures of aggregates was examined. The mechanisms of aggregate formation and structural transition were discussed. It was found that the increase of DBSA concentration can drive the occurrence of a micelle-to-vesicle transition, showing a critical micelle concentration and critical vesicle concentration of ∼0.53 and 2.14 mM, respectively. The vesicles formed coexist with micelles in solution, with a unilamellar structure and ∼80 nm size, and exhibit size-selective permeability. In addition, the vesicles show remarkable stability upon long-term storage, exposure to high temperature, and freeze-thaw cycles. The H-bonding interaction between DBSA species and the interdigitated structure of alkyl chains in bilayers play a key role in the formation and stability of DBSA vesicles. Interestingly, it was found that the wet-dry cycle can induce a micelle-to-vesicle transition and an obvious increase in the size of the original vesicles, accompanied by the formation of some multilamellar vesicles. This work provides a better understanding of the aggregation behavior of simple SCAs in their single-component aqueous solutions.
Collapse
Affiliation(s)
- Meihua Gao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Na Du
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Zhiyin Yao
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Ying Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Nan Chen
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China.
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China. and National Engineering Technology Research Center of Colloidal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
19
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Yu Q, Sun N, Hu D, Wang Y, Chang X, Yan N, Zhu Y, Li Y. Encapsulation of inorganic nanoparticles in a block copolymer vesicle wall driven by the interfacial instability of emulsion droplets. Polym Chem 2021. [DOI: 10.1039/d1py00744k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We proposed an effective route, i.e., three-dimensional confined co-assembly of block copolymers and inorganic nanoparticles, to efficiently encapsulate high-density and large-size nanoparticles into the wall of polymeric vesicles.
Collapse
Affiliation(s)
- Qunli Yu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Nan Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Dengwen Hu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yaping Wang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiaohua Chang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yutian Zhu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Yongjin Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|