1
|
Pise S, Ahmad I, Dey N. Can conformational flexibility influence the self-assembly behavior and sensing efficacy of fluorogenic amphiphiles? A case study with bisbenzimidazole-based probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1137-1147. [PMID: 39813070 DOI: 10.1039/d4ay01644k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg2+ ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg2+ under similar conditions. Detailed mechanistic studies indicated that compound 1 formed a 1 : 2 complex with the Hg2+ ions, where both the pyridine nitrogen ends and benzimidazole units are involved in the coordination. However, for compound 2, the binding stoichiometry changed to 1 : 1 and the Hg2+ ions remained connected only through the pyridine nitrogen ends. Not only did changes in the molecular level interactions alter the optical response, but they also altered the efficacy of the Hg2+ sensing; the degree of response was more prominent with compound 1 than that of compound 2. Also, it was observed that the addition of Hg2+ to compound 1 could dissociate the preformed aggregated structures of 1, while in the case of compound 2, the addition of Hg2+ promotes aggregate formation. The sensor was further utilized for analysis of real-life water samples and the detection of Hg2+ under intracellular conditions (HeLa cells).
Collapse
Affiliation(s)
- Suraj Pise
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad 500078, India
| | - Imran Ahmad
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014, India.
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad 500078, India
| |
Collapse
|
2
|
Yang X, Zhang S, Luo F, Zhang Y, Yan D, Lai M, Ye Y, Sun K, Ji X. An AIE-based ratiometric fluorescent probe for highly selective detection of H 2S in plant stress responses. Biosens Bioelectron 2025; 267:116798. [PMID: 39312836 DOI: 10.1016/j.bios.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a crucial signaling molecule in plant stress responses, playing a significant role in regulating various physiological and biochemical processes. In this study, we report an aggregation-induced emission (AIE)-based ratiometric fluorescent probe TPN-H2S for the highly selective detection of H2S in plant tissues. The probe exhibited excellent sensitivity and selectivity towards H2S over other analytes, enabling real-time monitoring of H2S dynamics in living cell. Furthermore, the AIE-based ratiometric probe TPN-H2S allowed for accurate quantification of H2S levels, providing valuable insights into the spatiotemporal distribution of Cys metabolism produces H2S. Importantly, the physiological pathways and signaling mechanisms of H2S production of was investigated in plant tissues under Cr and nano-plastics stress. Utilizing a high-throughput screening approach, we identified exogenous substances such as calcium chloride (CaCl2) and abscisic acid (ABA) that could induce higher level of H2S production during the stress response in plants. Overall, those findings demonstrate the potential of the AIE-based ratiometric fluorescent probe TPN-H2S as a powerful tool for unraveling the role of H2S in plant stress responses and pave the way for further exploration of H2S-mediated signaling pathways in plants.
Collapse
Affiliation(s)
- Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiyi Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Luo
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dingwei Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Deoghoria AK, Dey N. Precision Methanol Sensing: Integrating Chemical Insights of Optical Sensors for Enhanced Detection. J Fluoresc 2024:10.1007/s10895-024-03860-0. [PMID: 39235655 DOI: 10.1007/s10895-024-03860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Methanol has become a very important part of many industries, ranging from chemical production and pharmaceuticals to automotive and electronics manufacturing as a result of which methanol usage has spiked in recent years. But this exponential increase asks for precise detection methods as methanol has not only detrimental effects on environment but it is very dangerous to human health even if consumed in a minute amount .This paper will explore the unique physical and chemical properties of methanol which can be exploited to make it a target for different mechanisms such as H-Bonding, induced self-assembly, Internal Charge Transfer (ICT), Aggregation-induced emission (AIE), conformational flexibility, keto-enol tautomerization, adsorption etc. by various small molecule and nano-particles. Informative studies on small molecules involves functionalized pentacenequinone derivatives, luminogens, ligands and fluorescent probes which can be used to detect methanol by change in color or intensity which can be easily detected in real time and is portable. On the other hand, nanoparticle-based probes reveal the use of materials like chitosan/zinc, sulfide composites, Quantum Dots (QDs) hybrids, graphene polyoxides, Ag-LaFeO3 etc. which provides with selective and sensitive methanol optical and conductometric sensing. This paper acknowledges the contributions of various studies and researchers who contributed to advancing the field of methanol sensing, providing a foundation for future developments.
Collapse
Affiliation(s)
- Amit K Deoghoria
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
4
|
Barkale HV, Dey N. Selective sensing of cyanide ions: impact of molecular design and assembly on the response of π-conjugated acylhydrazone compounds. RSC Adv 2024; 14:25108-25114. [PMID: 39139252 PMCID: PMC11317877 DOI: 10.1039/d4ra01884b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/24/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigates the sensing properties of two distinct compounds, denoted as 1 and 2, featuring acylhydrazone units. Spectroscopic analyses reveal the disruption of the supramolecular assembly upon binding with cyanide ions, consequently due to the hydrogen bonding interaction with acylhydrazone units. This leads to a ratiometric, color-changing response of both the compounds specifically towards cyanide ions. The investigation sheds light on the reversible nature of the cyanide-probe interaction and highlights the potential for reusability in cyanide ion detection. Moreover, compound 1, distinguished by its long alkyl chains, displays a superior response to CN- ions (∼4-fold larger signal), in contrast to compound 2. However, interference was observed from other basic anions, such as F- and AcO-. The research suggests the dominating role of supramolecular assembly, intermolecular interaction, and local hydrophobic environment around the binding sites on the analytical performance of the probe molecules. The findings underscore the significance of structural design and molecular assembly in dictating the selectivity and sensitivity of compounds, offering valuable insights for the development of efficient sensor systems in diverse real-world applications.
Collapse
Affiliation(s)
- Harshal V Barkale
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Hyderabad Telangana 500078 India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Hyderabad Telangana 500078 India
| |
Collapse
|
5
|
Karar M, Barkale HV, Vasishtha SD, Dey N. Designing Unconventional Molecular Ternary INHIBIT Logic Gate and Crafting Multifunctional Molecular Logic Systems. J Phys Chem B 2024; 128:6684-6692. [PMID: 38980697 DOI: 10.1021/acs.jpcb.4c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The paper describes an improved method for building flexible interswitchable logic gates such as rare-type molecular ternary INHIBIT and combinational logic circuits using a specially designed pyridine-end oligo-p-phenylenevinylene compound featuring alkyl substituents (-C16H33) in a THF medium. The probe molecule showed distinct opto-chemical signals upon interaction with Cu(II) and Hg(II) in THF medium. It is interesting to note that the presence of certain anions (S2-, I-, and CN-) could specifically mask the interaction of either of these metal ions or both. The most exciting thing is that we used a completely new gate design technique to construct a rare-type ternary INHIBIT logic gate using Cu(II), Hg(II), and CN- ions as three chemical inputs. With the identical set of chemical inputs, two more ternary combinational logic circuits were created out of these case-specific, independent reversible and irreversible spectroscopic studies. Finally, we were able to design adaptive molecular logic systems composed of several logic gates, including NOR, AND, IMPLICATION, INHIBIT, TRANSFER, and COMPLEMENT, that in this specific situation change the sort of logic sense by effortless optical toggling.
Collapse
Affiliation(s)
- Monaj Karar
- MLR Institute of Technology, Hyderabad, Hyderabad, India 500043
| | - Harshal V Barkale
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Hyderabad, India 500078
| | - Sahil D Vasishtha
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Hyderabad, India 500078
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Hyderabad, India 500078
| |
Collapse
|
6
|
Tiwari A, Fernandes RS, Dey N, Kanungo S. Comparative Analysis of the Hydrazine Interaction with Arylene Diimide Derivatives: Complementary Approach Using First Principles Calculation and Experimental Confirmation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10966-10979. [PMID: 38748624 DOI: 10.1021/acs.langmuir.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Suitable functional group-engineered π-conjugated aromatic dimides based on perylene (PDI) and naphthyl scaffolds (NDI) demonstrated excellent sensitivity toward different gaseous analytes. However, to date, no methodical analysis has been performed to rationalize molecular-level interactions in the context of optical transduction, which is essential for systematic performance optimization of NDI/PDI-based molecular sensors. Therefore, in this present work, NDI/PDI scaffolds have been designed with amino acid functional groups (alanine, ALA and glutamic acid, GLU) at the terminal positions, and we subsequently compared the efficacy of four different imide derivatives as model hosts for hydrazine adsorption. Specifically, the adsorption of hydrazine at different interaction sites has been thoroughly investigated using ab initio calculations, where the adsorption energy, charge transfer, and recovery time have been emphasized. Theoretical results exhibit that irrespective of host specification the COOH groups offer a primary interaction site for hydrazine through the hydrogen bonding interaction. The presence of more COOH groups and relatively stronger interaction with secondary edge oxygen ensure that GLU functional moieties are a superior choice over ALU for efficient hydrazine binding. The molecular energy spectrum analysis exhibits more favorable HOMO/LUMO gap variations after hydrazine interaction in the case of PDI derivatives irrespective to the nature of the amino acid residues. Therefore, by a combination of both factors, PDI-GLU has been identified as the most suitable host molecule for hydrazine among four derivatives. Finally, the key theoretical predictions has been later experimentally validated by analyzing UV-visible spectroscopy and NMR studies, wherein the mechanism of interaction has also been experimentally verified by EPR analysis and FT-IR studies.
Collapse
Affiliation(s)
- Aditya Tiwari
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Rikitha S Fernandes
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sayan Kanungo
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
7
|
Barkale HV, Dey N. Tuning Sensing Efficacy of Oligo(phenylenevinylene) Based Chromogenic Probes: Effect of Alkyl Substituents on Metal Ion Detection at Micelle-Water Interface. Chem Asian J 2024; 19:e202400058. [PMID: 38436497 DOI: 10.1002/asia.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this work, we conducted a comparative analysis of the metal ion sensing capabilities of two pyridine-end oligo p-phenylenevinylene compounds featuring different alkyl substituents (-C4H9 and -C16H33) within a micelle medium. Our findings revealed a correlation between the positioning of the probe molecules within the micelle and the length of the alkyl chains, impacting their self-assembly tendencies and optical characteristics. The compound with shorter alkyl chains demonstrated a superior affinity towards Hg2+ ions, whereas exposure to the compound with longer alkyl substituent resulted in a color-changing response with both Cu2+and Hg2+ ions. Intriguingly, the sensitivity towards Hg2+ ions heightened with increasing alkyl chain length. This trend persisted in non-polar solvents like THF. The capacity to modulate sensing efficacy solely by adjusting the length of the alkyl chains represents a relatively uncommon occurrence in the existing literature. This discovery suggests promising prospects for engineering sensory devices equipped with adaptable sensitivity.
Collapse
Affiliation(s)
- Harshal V Barkale
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, Telangana, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, Telangana, India
| |
Collapse
|
8
|
Zhang Z, Wang J, Luo Y, Li C, Sun Y, Wang K, Deng G, Zhao L, Yuan C, Lu J, Chen Y, Wan J, Liu X. A pH-responsive ZC-QPP hydrogel for synergistic antibacterial and antioxidant treatment to enhance wound healing. J Mater Chem B 2023; 11:9300-9310. [PMID: 37727911 DOI: 10.1039/d3tb01567j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The problems of bacterial resistance and high oxidation level severely limit wound healing. Therefore, we constructed a multifunctional platform of chitosan quaternary ammonium salts (QCS)/polyvinyl alcohol (PVA)/polyethylene glycol (PEG) hydrogels (QPP) loaded with ZnO@CeO2 (ZC-QPP). Firstly, the hydrogel was co-cross-linked by hydrogen and borate ester bonds, which allows easy adherence to a tissue surface for offering a protective barrier and moist environment for wounds. The chitosan quaternary ammonium salts due to their amino groups have inherent antibacterial properties to induce bacterial death. In response to the acidic conditions of the bacterial infection microenvironment, the borate ester bonds in the QPP hydrogel break and the ZC NCs dispersed in the hydrogel are released. The gradual dissociation of Zn2+ under acidic conditions can directly damage bacterial membranes. The wound site of bacterial infection always causes overexpression of reactive oxygen species (ROS) levels, often leading to inflammation and preventing rapid wound repair. CeO2 can eliminate excess ROS to reduce the inflammatory response. From in vitro and in vivo results, the high biosafety of the ZC-QPP hydrogel has demonstrated excellent antibacterial and antioxidant performance to enhance wound healing. Therefore, the ZC-QPP hydrogel opens a method to develop multifunctional synergistic therapeutic platforms combining enzyme-like nanomaterials with hydrogels for synergistic antibacterial and antioxidant treatment to promote wound healing.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Yangang Sun
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ying Chen
- Department of Radiation Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Shanghai 200336, China
| | - Jian Wan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
9
|
Biswakarma D, Dey N, Bhattacharya S. Hydrogel Nanocomposite Towards Optical Sensing of Spermine in Biomedical and Real-Life Food Samples and Remediation of Toxic Dyes from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11610-11620. [PMID: 37605815 DOI: 10.1021/acs.langmuir.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Nanocomposites such as graphene oxide (GO) have been incorporated into hydrogels to enhance conventional hydrogels' properties and develop new functions. Unique and strong molecular interactions between GO and low molecular weight gelators allow the fabrication of various functional hydrogels suitable for different applications. In the present study, we report a stable and soft nanocomposite hydrogel comprising a pyrene-based chiral amphipath having an amino acid (l-phenylalanine) core with pendant oligo-oxyethylene hydrophilic chains and GO. The mechanical and viscoelastic properties of the nanocomposite hydrogel were thoroughly studied using various spectroscopic, microscopic, and mechanical techniques. Even without GO, native hydrogels could form a self-supported thermoreversible and thixotropic hydrogel composed of the fibrillar network. Unlike native hydrogels, the morphological investigation of nanocomposite gels shows the presence of cross-linked nanosheet-like structures. The combined effect of π-π stacking and H-bonding interactions is the driving force for the formation of such composite hydrogels. Moreover, the nanocomposite hydrogels possess significantly superior mechanical stiffness than the native hydrogels. Interestingly, the thixotropic properties observed with the parent gel were retained even in the presence of carbon nanomaterials (GO). The nanocomposite hydrogel could be employed in the optical sensing of a biogenic polyamine, spermine, resulting in a visible gel-to-sol transition. The superior electrostatic interaction between the GOs and spermine molecules might have led to the release of entrapped fluorogenic dyes from the hydrogel network and a turn-on emission response. The sensory system was employed to analyze spermine content in human urine samples and decomposed food items. A gel-coated paper strip was also developed for onsite detection of the spermine. The nanocomposite hydrogel was further utilized to remove toxic organic dyes such as methylene blue (MB) and rhodamine B (RhB) from the aqueous media. The nanocomposite hydrogel thus showed excellent dye removal capabilities and was also found to be recyclable. Calculations of different mechanical parameters suggest that the dye removal efficiency of the nanocomposite hydrogel was better for MB than for RhB.
Collapse
Affiliation(s)
- Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana 700078, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
10
|
Zhang C, Qin Y, Deng C, Zhu N, Shi Y, Wang W, Qin L. GSH-specific fluorescent probe for sensing, bioimaging, rapid screening of natural inhibitor Celastrol and ccRCC theranostics. Anal Chim Acta 2023; 1248:340933. [PMID: 36813462 DOI: 10.1016/j.aca.2023.340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
High level of intracellular glutathione (GSH) has been identified as a major barrier for cancer therapy. Therefore, effective regulation of GSH can be regarded as a novel approach for cancer therapy. In this study, an off-on fluorescent probe (NBD-P) is developed for selective and sensitive sensing GSH. NBD-P has a good cell membrane permeability that can be applied in bioimaging endogenous GSH in living cells. Moreover, the NBD-P probe is used to visualize GSH in animal models. In addition, a rapid drug screening method is successfully established using the fluorescent probe NBD-P. A potent natural inhibitor of GSH is identified as Celastrol from Tripterygium wilfordii Hook F, which effectively triggers mitochondrial apoptosis in clear cell renal cell carcinoma (ccRCC). More importantly, NBD-P can selectively respond to GSH fluctuations to distinguish cancer tissues from normal tissues. Thus, the present study provides insights into fluorescence probes for the screening GSH inhibitors and cancer diagnosis, as well as in-depth exploration of the anti-cancer effects of Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Qin
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Changfeng Deng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
11
|
de Carvasal KP, Vergoten G, Vasseur JJ, Smietana M, Morvan F. Supramolecular Recognition of Phosphodiester-Based Donor and Acceptor Oligomers Forming Gels in Water. Biomacromolecules 2023; 24:756-765. [PMID: 36724436 DOI: 10.1021/acs.biomac.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inspired by automated DNA synthesis, electron-rich dialkoxynaphthalene (DAN) donor and electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor phosphodiester-linked homohexamers were synthesized by the phosphoramidite method. Two types of hexamers were prepared, one with only one phosphodiester between the aromatics (i.e., DAN or NDI) and a second with two phosphodiesters around a propanediol between the aromatics, leading to the latter more flexible and more hydrophilic hexamers. The folding properties of these homohexamers alone or mixed together, in water only, were studied by UV-visible absorption spectroscopy and atomic force microscopy (AFM). AFM imaging revealed that a 1:1 mixture of hexaDAN and hexaNDI formed fibers by charge transfer donor-acceptor recognition leading to a hydrogel after drying. The organization of the resulting structures is strongly dependent on the nature of the complementary partner, leading to the formation of mono- or multilayer hydrogel networks with different compactness.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Gérard Vergoten
- Université de Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, Lille 59006, France
| | - Jean-Jacques Vasseur
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| |
Collapse
|
12
|
Bassan R, Varshney M, Roy S. An Amino Acid‐Based Thixotropic Hydrogel: Tuning of Gel Recovery Time by Mechanical Shaking. ChemistrySelect 2023. [DOI: 10.1002/slct.202203317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ruchika Bassan
- Department of chemistry Birla Institute of Technology and science-Pilani K K Birla Goa Campus NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Mayank Varshney
- Application Specialist Characterization Division Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area, Gurgaon 122016 Haryana) India
| | - Subhasish Roy
- Department of chemistry Birla Institute of Technology and science-Pilani K K Birla Goa Campus NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
13
|
Biswakarma D, Dey N, Bhattacharya S. Thermoresponsive sustainable release of anticancer drugs using cyto-compatible pyrenylated hydrogel as vehicle. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Shu W, Yu J, Wang H, Yu A, Xiao L, Li Z, Zhang H, Zhang Y, Wu Y. Rational design of a reversible fluorescent probe for sensing GSH in mitochondria. Anal Chim Acta 2022; 1220:340081. [DOI: 10.1016/j.aca.2022.340081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
|
15
|
Biswakarma D, Dey N, Bhattacharya S. Molecular design of amphiphiles for Microenvironment-Sensitive kinetically controlled gelation and their utility in probing alcohol contents. J Colloid Interface Sci 2022; 615:335-345. [DOI: 10.1016/j.jcis.2021.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
|
16
|
Dey N. Coordination-driven reversible supramolecular assembly formation at biological pH: Trace-level detection of Hg 2+ and I - ions in real life samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120447. [PMID: 34695678 DOI: 10.1016/j.saa.2021.120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Pyridine coupled bisbenzimidazole probe has been developed for colorimetric sensing of heavy metal pollutants in the aqueous medium. Mechanistic investigation indicates that Hg2+ ions (detection limit: 7.5 ppb) bind to the pyridyl nitrogen ends and form linear supramolecular assembly. Red-shifted absorption and fluorescence maxima upon addition of Hg2+ ions were observed, presumably caused by charge transfer interaction and coordination-driven planarization of the biphenyl backbone. Additionally, the in-situ formed mercury complex was utilized for selective recognition of iodide ion (detection limit: 20.2 ppb). Considering its high sensitivity, the present system was utilized in analysing Hg2+ in natural water and in presence of albumin protein. The high recovery values ranging from 95 to 98% with substantially low relative standard deviation (<4%) confirm the suitability of the present method in estimating trace-level of Hg2+ even in real-life samples. Imaging of intracellular Hg2+ ion was also achieved in cervical cancer cells. Low-cost paper strips are designed for rapid, on-site detection of Hg2+ without engaging any sophisticated analytical tools or trained personnel.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India.
| |
Collapse
|
17
|
Biswakarma D, Dey N, Bhattacharya S. A biocompatible hydrogel as a template for oxidative decomposition reactions: a chemodosimetric analysis and in vitro imaging of hypochlorite. Chem Sci 2022; 13:2286-2295. [PMID: 35310481 PMCID: PMC8864679 DOI: 10.1039/d1sc05424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly properties of new biocompatible, thermoreversible fluorescent hydrogels, composed of amino acid residues have been reported. A unique gel-to-sol transition is triggered by chemodosimetric interaction in the presence of hypochlorite.
Collapse
Affiliation(s)
- Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Nilanjan Dey
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad-500078, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
18
|
Yang QQ, Ji N, Zhan Y, Tian QQ, Cai ZD, Lu XL, He W. Rational design of a new near-infrared fluorophore and apply to the detection and imaging study of cysteine and thiophenol. Anal Chim Acta 2021; 1186:339116. [PMID: 34756262 DOI: 10.1016/j.aca.2021.339116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
The development of a near-infrared fluorophore with excellent fluorescence performance, a large Stokes shift, and good biocompatibility has become a focus in the field of fluorescence imaging in recent years. Based on quantum chemistry calculations and reasonable molecular design strategies, a new NIR fluorophore was developed and characterized by simple synthesis, easy structural modification, and a large Stokes shift (105 nm). Furthermore, two new "activatable" fluorescent probes QN-Cys and QN-DNP were synthesized using a simple structural modification. The probe QN-Cys can recognize Cys with high sensitivity (LOD = 128 nM) and high selectivity, and its fluorescence intensity has a good linear relationship with the Cys concentration in the range of 5-35 μM. Furthermore, probe QN-Cys can effectively distinguish Cys from Hcy and GSH, and was successfully applied to the detection and imaging of Cys in human serum, cells, and zebrafish. The probe QN-DNP showed a good specific and sensitive (LOD = 78 nM) fluorescence response to thiophenol, and its fluorescence intensity has a good linear relationship with the thiophenol concentration in the range of 5-30 μM. Furthermore, it was successfully applied to detect thiophenol in real water samples with good recoveries (97-102%), and image thiophenol in living cells, zebrafish and mice. Notebly, the QN-DNP probe could be applied to visualize the distribution of thiophenol in the mice.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China
| | - Nan Ji
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China
| | - Yu Zhan
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China
| | - Ze-Dong Cai
- Department of Pharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xian-Lin Lu
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, PR China.
| |
Collapse
|
19
|
A novel selective probe for detecting glutathione from other biothiols based on the concept of Fluorescence Fusion. Anal Chim Acta 2021; 1177:338786. [PMID: 34482889 DOI: 10.1016/j.aca.2021.338786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
Biological thiols importantly regulate the intracellular redox activity and metabolic level, but many of the developed probes for biothiols are facing difficulty in effectively distinguishing GSH from Cys/Hcy due to the similarity in mechanism. In this work, despite the previous pattern of "Logic Gate", we reported the concept of "Fluorescence Fusion" for the first time to achieve only one excitation-emission process. The exploited the probe, MZ-NBD, could quickly measure GSH in 10 min with a large Stokes shift (130 nm). Though the reacting mechanism was similar, only GSH could cause the "Fluorescence Fusion" with only one strong fluorescence response while Cys/Hcy caused two peaks. Adjusting the excitation wavelength could hardly split the fused peak into two. Though image recognition by artificial intelligence could easily distinguish the patterns of peaks, here we used the signal-treating method to realize the high selectivity towards GSH. Moreover, MZ-NBD could be utilized for rapid detection of GSH in living MCF-7 cells, which was more suitable for GSH than using the "Logic Gate" strategy. More than introducing a novel probe with the new concept, this work was meaningful as the linker of traditional reaction-based fluorescent probes and potential image recognition by artificial intelligence, thus led to various future researches in inter-disciplines.
Collapse
|
20
|
An Z, Shan T, He H, Ma M, Shi Y, Chen S, Wang X. Contradiction or Unity? Thermally Stable Fluorescent Probe for In Situ Fast Identification of Self-sort or Co-assembly of Multicomponent Gelators with Sensitive Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8774-8781. [PMID: 33561340 DOI: 10.1021/acsami.0c21630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analyzing the assembly patterns of multicomponent gelators is important for understanding their assembly rules and precisely manipulating their molecular structure to form a tailored multifunctional supramolecular gel. But the fast in situ recognition technology to infer whether the assembly pattern is a self-sorting or co-assembled system is lacking. For developing a widely applicable stable and sensitive fluorescent probe to infer assembly patterns, we design and synthesize the multiple peripheral functional group tetraphenylethene (TPE) modified well-defined cubic core polyhedral oligomeric silsesquioxane (POSS) three-dimensional (3D) dendrimer. POSS-TPE can form a thermally stable self-assembly structure after being incubated in a wide temperature range, and the resultant special thermally stable photoluminescence (PL) intensity provides a novel possibility of fluorescent probe. Then, POSS-TPE sensitively catches the mechanical stress changes of the confined space provided by the gel networks and infers the assembly patterns by comparing the mechanical stress change laws of a self-sorting or co-assembled system. So, the application of fluorescent probe in assembly fields is enlarged in this research. In the future, this widely applicable fluorescent probe will be helpful to develop supramolecular assembly materials consisting of multicomponent gels.
Collapse
Affiliation(s)
- Zhihang An
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianyu Shan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|