1
|
Hou J, Xu HN. Guest-guided anchoring patterns of cyclodextrin supramolecular microcrystals on droplet surfaces. Carbohydr Polym 2024; 337:122142. [PMID: 38710551 DOI: 10.1016/j.carbpol.2024.122142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
The growth of cyclodextrin inclusion complexes (ICs) on oil/water interfaces represents a beautiful example of spontaneous pattern formation in nature. How the supramolecules evolve remains a challenge because surface confinement can frustrate microcrystal growth and give rise to unusual phase transitions. Here we investigate the self-assembly of ICs on droplet surfaces using microfluidics, which allows directly visualizing packing, wetting and ordering of the microcrystals anchored on the surface. The oil guests of distinct molecular structures can direct the assembly of the ICs and largely affect anchoring dynamics of the ICs microcrystals, leading to a range of behaviors including orientating, slipping, buckling, jamming, or merging. We discuss the behaviors observed in terms of the flexibility of the building blocks, which offers a new degree of freedom through which to tailor their properties and gives rise to a striking feature of anchoring patterns that have no counterpart in normal colloidal crystals.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
2
|
Jia M, Liang Y, Liu Z, Liu Y, Zhang X, Guo H. Hydroxypropyl-β-cyclodextrin-incorporated Pebax composite membrane for improved permselectivity in organic solvent nanofiltration. RSC Adv 2022; 12:16893-16902. [PMID: 35754874 PMCID: PMC9171748 DOI: 10.1039/d2ra01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Thanks to the characteristic hollow cavity structure and sustainable and nontoxic macrocycle molecule feature, cyclodextrins have been used as building block to fabricate organic solvent nanofiltration (OSN) membranes with enhanced permeability and selectivity. Herein, hydroxypropyl-β-cyclodextrin (HP-β-CD) was incorporated into a poly(ether-block-amide) (Pebax) layer on a polysulfone support, followed by crosslinking with toluene 2,4-diisocyanate to prepare a crosslinked HP-β-CD/Pebax (CHP) membrane. By adjusting the initial HP-β-CD concentration (x) and crosslinking reaction time (y), the microporous structure and surface morphology of CHP x-y (x = 0, 0.25, 0.5, 0.75; y = 5, 10, 15) membranes could be manipulated. The OSN performances of the CHP x-y membranes were evaluated by the removal of dyes in methanol solution. The results revealed that the optimal CHP0.5-10 membrane exhibited a high methanol permeance of 8.7 L m-2 h-1 bar-1, high dye rejection (>96%), and high running stability (at least 336 h), due to the intrinsically microporous structure and surface morphology. This work would inspire the further development of cyclodextrins and other macrocyclic molecules in the preparation of OSN membranes and provide a promising strategy to fabricate state-of-the-art membranes for the efficient separation of organic solvent reclamation and removal of organic pollutants.
Collapse
Affiliation(s)
- Mengmeng Jia
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P. R. China
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Ziyang Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P. R. China
| | - Yue Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P. R. China
| | - Xuehong Zhang
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P. R. China
| | - Hongxia Guo
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|
3
|
Song RH, Liu ZH, Geng X, Ye L, Zhang AY, Feng ZG. Preparation and characterization of cross-linked polyurethanes using β-CD [3]PR as slide-ring cross-linker. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Ando N, Uenuma S, Yokoyama H, Ito K. Thermally induced disassembly mechanism of pseudo-polyrotaxane nanosheets consisting of β-CD and a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer. Polym Chem 2022. [DOI: 10.1039/d1py01386f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PPRNSs dissolved in two steps during heating owing to the anisotropy of the topological constraint of β-CD by axis polymers.
Collapse
Affiliation(s)
- Naoki Ando
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-8561, Japan
| |
Collapse
|
5
|
Uenuma S, Endo K, Yamada NL, Yokoyama H, Ito K. Polymer Brush Formation Assisted by the Hierarchical Self-Assembly of Topological Supramolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60446-60453. [PMID: 34874694 DOI: 10.1021/acsami.1c18720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of methods for the polymer brush layer formation on material surfaces to improve the surface properties has been researched for decades. Here, we report a novel approach for the formation of a polymer brush layer on materials and the alteration of the surface properties using a pseudo-polyrotaxane nanosheet (PPRNS). In the PPRNS, β-cyclodextrin (CD) selectively covered the central poly(propylene oxide)29 segment of the carboxyl-terminated poly(ethylene oxide)75-b-poly(propylene oxide)29-b-poly(ethylene oxide)75 (COOH-EO75PO29EO75) triblock copolymer to form columnar crystals. The EO chains of COOH-EO75PO29EO75 then adopt polymer brush conformations and exhibit an oil-repellent property on the material surfaces. Based on the flexibility derived from the nanosheet structure, the PPRNS showed high adhesion to the Blu-ray disk substrate (1D bending), polystyrene spherical beads (2D bending), and random rough surface of pork skin. The PPRNS is expected to become a new method for obtaining polymer brush layers and improving the surface properties irrespective of the material type.
Collapse
Affiliation(s)
- Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Material Innovation Research Center (MIRC), Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kimika Endo
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki 319-1106, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Material Innovation Research Center (MIRC), Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Hu X, Shang M, Wang J, Liu L, Lu W, Ye L, Wang J. Mass Formation of α-Cyclodextrin Hexagonal Rods by the Direct Solvent Evaporation Strategy. ACS APPLIED BIO MATERIALS 2021; 4:8033-8038. [DOI: 10.1021/acsabm.1c00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xueyan Hu
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Miaomiao Shang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Jing Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ling Liu
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Weibang Lu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jin Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|