1
|
Lin J, Niu L, Jiang Y, Wang Y, Chu Z, Yang Z, Xie Z, Yang Y. Magnetic Hyperporous Elastic Material with Excellent Fatigue Resistance and Oil Retention for Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12078-12088. [PMID: 38805683 DOI: 10.1021/acs.langmuir.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Oily wastewater has caused serious threats to the environment; thus, high-performance absorbing materials for effective oil-water separation technology have attracted increasing attention. Herein, we develop a magnetic, hydrophobic, and lipophilic hyperporous elastic material (HEM) templated by high internal phase emulsions (HIPE), in which free-radical polymerization of butyl acrylate (BA) and divinylbenzene (DVB) is employed in the presence of poly(dimethylsiloxane) (PDMS), lecithin surfactant, and modified Fe3O4 nanoparticles. The adoption of the emulsion template with nanoparticles as both stabilizers and cross-linkers endows the HEM with biomimetic hierarchical open-cell micropores and elastic cross-linked networks, generating an oil absorbent with outstanding mechanical stability. Compressive fatigue resistance of the HEM is demonstrated to endure 2000 mechanical cycles without plastic deformation or strength degradation. By exploiting the synergistic effect of hierarchical structures and low-surface-energy components, the resulting HEM also possesses excellent and robust hydrophobicity (water contact angle of 164°) and good oil absorption capacity, in which Fe3O4 nanoparticles lead to convenient magnetically controlled oil recyclability as well. Notably, the unique biomimetic microporous structure demonstrates superior oil retention capacity (>95% at 1000 rpm and >60% at 10,000 rpm) over the state-of-the-art porous materials for a diverse variety of oils to reduce the risk of secondary oil leakage, along with good recoverability by squeezing owing to the excellent compression resilience. These excellent performances of our HEM provide broad prospects for practical applications in oil-water separation, energy conversion, and smart soft robotics.
Collapse
Affiliation(s)
- Jiamian Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liyong Niu
- Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuanyuan Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuting Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
2
|
Jialiangkang, Xiang F, He X, Li Z. Preparation of robust silicone superhydrophobic and antibacterial textiles using the Pickering emulsion method. Carbohydr Polym 2024; 323:121419. [PMID: 37940251 DOI: 10.1016/j.carbpol.2023.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
This study aimed to prepare textiles with superhydrophobic and antibacterial properties using the Pickering emulsion impregnation method. Cellulose nanocrystals were synergistically employed with dimethyloctadecyl[3-(trimethoxysilyl)-propyl] ammonium chloride as the solid surfactant, and hydrogenated (PHMS) and hydroxyl (MSDS) polysiloxane were used as the oil phase for emulsification. The emulsions were mixed and diluted in specific proportions, and the superhydrophobic and antibacterial textiles were prepared through fabric impregnation-drying strategies. The study optimised factors such as emulsion ratio and surfactant dosage. Results demonstrated that the nanoscale rough structure prepared using Pickering emulsion exhibited remarkable superhydrophobicity with contact and rolling angles of 163.1° ± 0.5° and 7.2° ± 0.2°, respectively. This effect was achieved when the ratio of PHMS emulsion to MSDS emulsion was maintained at 1:2 and the surfactant dosage was set at 2 %. The superhydrophobicity of textiles was maintained even after three washing cycles and 50 abrasion cycles, demonstrating excellent mechanical durability. The developed textiles also exhibited excellent oil/water separation ability, reliable recyclability and stability. Moreover, they demonstrated excellent self-cleaning and antibacterial capabilities. Thus, these valuable functionalities hold the potential to considerably improve the practical feasibility of superhydrophobic textiles in various application scenarios.
Collapse
Affiliation(s)
- Jialiangkang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Fan Xiang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Xiaoxiang He
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China; National Engineering Laboratory for Modern Silk, Suzhou 215123, China.
| |
Collapse
|
3
|
Wu J, Cui Z, Yu Y, Han H, Tian D, Hu J, Qu J, Cai Y, Luo J, Li J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129900. [PMID: 36096060 DOI: 10.1016/j.jhazmat.2022.129900] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Oily sewage discharged from indiscriminate industrial and frequent oil spills have become a serious global problem. There is an urgent need to separate stable oil/water emulsions by efficient and environmentally friendly methods. Membrane separation technology has the advantages of low energy consumption and low cost, thus is an effective solution to the problems of oily wastewater. However, the manufacture of multifunctional membranes with high efficiency, high flux and self-cleaning using renewable materials remains a challenge. Herein, three-dimensional (3D) smart membranes with switchable superhydrophobic-hydrophilic surfaces were prepared by grafting photo-responsive poly-spiropyran (PSP) on wood-based substrates via surface atom transfer radical polymerization. This novel membrane can efficiently separate stabilized water-in-oil and oil-in-water emulsions due to reversible hydrophilic-hydrophobic transition by switching UV and visible light irradiation. Remarkably, after immobilization, the PSP grafted on the wood substrate exhibited a faster photo response effect than the free spiropyran (SP). More importantly, the prepared 3D smart membranes showed exceptional high flux (4392 L•m-2•h-1) and efficiency (above 99.99 %), good cycle stability (99.99 % after 12 times) and durability (available for at least 60 days) for the separation of surfactant-stabilized water-in-oil emulsions. This work opens a new avenue for the design of functional biomass-derived membranes for efficient and sustainable oily wastewater treatment with high flux, easy scale-up, and green regeneration.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - He Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China.
| | - Jianlin Luo
- Guizhou Provincial Engineering Research Center for Biological Resources Protection and Effificient Utilization of the Mountainous Region, Guiyang University, Guiyang 550005, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China; Key Laboratory of Wood-Based Materials Science and Utilization, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
4
|
Li L, Zhou Y, Li P, Xu Q, Li K, Hu H, Bing W, Zhang Z. Peptide hydrogel based sponge patch for wound infection treatment. Front Bioeng Biotechnol 2022; 10:1066306. [PMID: 36588952 PMCID: PMC9797970 DOI: 10.3389/fbioe.2022.1066306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Dressing with the function of anti-wound infection and promoting skin repair plays an important role in medicine, beauty industry, etc. In terms of anti-wound infection, traditional dressings, such as gauze, have problems such as excessive bleeding in the process of contact or removal, and slow wound healing due to poor biological compatibility. The development of new functional and biocompatible dressings has essential application value in biomedical fields. In this study, a new type of dressing based on polypeptide functional sponge patch was constructed. The porous sponge patch is made of antimicrobial peptide and medical agarose through gel and freeze-drying technology. In vitro antibacterial experiments and small animal skin wound infection model experiments show that the porous sponge has excellent antibacterial and anti-skin infection activities, as well as the function of promoting wound healing.
Collapse
Affiliation(s)
- Lanxin Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China,College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Peizhe Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Xu
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Kaiyan Li
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Hai Hu
- Shanghai Beautyart Biotechnology Co., Ltd., Shanghai, China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China,*Correspondence: Wei Bing, ; Zhijun Zhang,
| | - Zhijun Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Wei Bing, ; Zhijun Zhang,
| |
Collapse
|
5
|
Wang C, Zhou L, Ma C, Zhang L, Li Y. Synthesis of cellulose based super absorbent and its excellent oil–water separation properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chun Wang
- School of Biological and Food Engineering Guangdong University of Petrochemical Technology Maoming China
| | - Li Zhou
- School of Biological and Food Engineering Guangdong University of Petrochemical Technology Maoming China
| | - Chao Ma
- School of Biological and Food Engineering Guangdong University of Petrochemical Technology Maoming China
| | - Lu Zhang
- Guangdong Biomaterials Engineering Technology Research Center Institute of Biological and Medical Engineering, Guangdong Academy of Sciences Guangzhou P. R. China
| | - Yuan Li
- Guangdong Biomaterials Engineering Technology Research Center Institute of Biological and Medical Engineering, Guangdong Academy of Sciences Guangzhou P. R. China
| |
Collapse
|
6
|
Pandey N, Ojha U. Bio‐based polydimethylsiloxane porous sponge materials with programmable hydrophobicity and porosity for efficient separation of hydrophobic liquids from water. J Appl Polym Sci 2022. [DOI: 10.1002/app.51823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Niharika Pandey
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| | - Umaprasana Ojha
- Department of Chemistry Rajiv Gandhi Institute of Petroleum Technology Jais India
| |
Collapse
|
7
|
Lu J, Gao G, Liu R, Cheng C, Zhang T, Xu Z, Zhao Y. Emulsion-templated porous polymers: drying condition-dependent properties. SOFT MATTER 2021; 17:9653-9663. [PMID: 34633025 DOI: 10.1039/d1sm00831e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Macroporous materials templated using high internal phase emulsions (HIPEs) are promising for various applications. To date, new strategies to create emulsion-templated porous materials and to tune their properties (especially wetting properties) are still highly required. Here, we report the fabrication of macroporous polymers from oil-in-water HIPEs, bereft of conventional monomers and crosslinking monomers, by simultaneous ring-opening polymerization and interface-catalyzed condensation, without heating or removal of oxygen. The resulting macroporous polymers showed drying condition-dependent wetting properties (e.g., hydrophilicity-oleophilicity from freezing drying, hydrophilicity-oleophobicity from vacuum drying, and amphiphobicity from heat drying), densities (from 0.019 to 0.350 g cc-1), and compressive properties. Hydrophilic-oleophilic and amphiphobic porous polymers turned hydrophilic-oleophobic simply by heating and protonation, respectively. The hydrophilic-oleophobic porous polymers could remove a small amount of water from oil-water mixtures (including surfactant-stabilized water-in-oil emulsions) by selective absorption and could remove water-soluble dyes from oil-water mixtures. Moreover, the transition in wetting properties enabled the removal of water and dyes in a controlled manner. The feature that combines simply preparation, tunable wetting properties and densities, robust compression, high absorption capacity (rate) and controllable absorption makes the porous polymers to be excellent candidates for the removal of water and water-soluble dyes from oil-water mixtures.
Collapse
Affiliation(s)
- Jintao Lu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Guohong Gao
- Jiangsu Guowang High-Technique Fiber Co., Ltd, Suzhou 215228, China
| | - Riping Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Chen Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
- Jiangsu Guowang High-Technique Fiber Co., Ltd, Suzhou 215228, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China.
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Liu H, Sun Y, Chen Z. One-pot facile synthesis of PDMS/PDMAEMA hybrid sponges for surfactant stabilized O/W emulsion separation. SOFT MATTER 2021; 17:9363-9370. [PMID: 34605529 DOI: 10.1039/d1sm01061a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrophobic/oleophilic sponges are excellent absorbent materials for oil contaminant removal. However, the application is limited in dealing with surfactant stabilized O/W emulsions. The water in the emulsion isolates the contact between the sponge and oil droplets. Consequently, the oil absorption efficiency is not ideal. Herein, to improve the oil absorption efficiency from anionic surfactant stabilized O/W emulsions, water responsive hybrid sponges were reported. To prepare such sponges, water soluble poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) was introduced into polydimethylsiloxane (PDMS) sponges using table salt as a template and multi-walled carbon nanotubes (MWCNTs) as mechanical reinforcement in a one-pot method. Upon contact with an O/W emulsion, the water soluble PDMAEMA chain rose to the surface of the sponge, turning the hydrophobic surface into hydrophilic. Next, the tertiary amine groups in PDMAEMA ionized in water and carried positive charges which would cause the coagulation of oil droplets. Finally, the coagulated oil droplets were absorbed immediately by the oleophilic inner part of the sponge through the wicking effect. As a result, a Janus interface was generated in situ and sustained. Such material design synergistically contributed to a satisfactory hexadecane (HD) absorption efficiency of 178 ± 4% in 25 min. In contrast, the PDMS-MWCNT1.0% sponge could only absorb 9.8 ± 0.2% HD. Moreover, these sponges also presented robust mechanical performance and reusability, offering a new route for oil/water separation and oil pollution remediation in open water.
Collapse
Affiliation(s)
- Haifeng Liu
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
- Yinchuan Zhongke Yuanhao Technology Co., Ltd, Yinchuan 750011, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Zhonghui Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Avais M, Kumari S, Chattopadhyay S. Degradable and processable polymer monoliths with open-pore porosity for selective CO 2 and iodine adsorption. SOFT MATTER 2021; 17:6383-6393. [PMID: 34232242 DOI: 10.1039/d1sm00441g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A task-specific design of biodegradable and processable porous polymers is one of the primary requisite for their efficient day-to-day use to minimize polymer waste. Herein, a surfactant (or additive)-free method is reported for the synthesis of a processable and degradable aliphatic open-pore porous polyelectrolyte monolith for the removal of gaseous pollutants such as iodine and CO2. This is achieved via a colloidal templating method. In the 1st stage, cationic colloidal nanoparticles containing reactive amines and acrylamide groups were formed via the phase separation of hyperbranched polyaminoamides in water (sol). These cationic nanoparticles (which acted as both templates and macromers) further reacted to form a gel, which upon freeze-drying leads to the formation of a polymer monolith with an open-pore porous morphology and hierarchical porosity throughout its structure. During gelation, the shape of the monolith can be controlled using suitable templates and a similar strategy was used to prepare porous thin films. The monolith has shown excellent iodine adsorption ability (5000 mg g-1 in the vapor phase and 2663 mg g-1 in the solution phase) with good reusability and CO2 adsorption ability (60 mg g-1), with CO2/CH4 and CO2/N2 selectivities of 18.5 and 6.7, respectively. The degradability of the materials was studied in detail at different pH, confirming their easy degradability in aqueous solutions and a higher degradability at basic pH.
Collapse
Affiliation(s)
- Mohd Avais
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Sulbha Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| |
Collapse
|