1
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03469-x. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Giuri D, Cenciarelli F, Tomasini C. Low-molecular-weight gels from amino acid and peptide derivatives for controlled release and delivery. J Pept Sci 2024:e3643. [PMID: 39010663 DOI: 10.1002/psc.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Low-molecular-weight (LMW) gelators are a versatile class of compounds able to self-assemble and to form supramolecular materials, such as gels. The use of LMW peptides to produce these gels shows many advantages, because of their wide structure tunability, the low-cost and effective synthesis, and the in vivo biocompatibility and biodegradability, which makes them optimal candidates for release and delivery applications. In addition, in these materials, the binding of the hosts may occur through a variety of noncovalent interactions, which are also the main factors responsible for the self-assembly of the gelators, and through specific interactions with the fibers or the pores of the gel matrix. This review aims to report LMW gels based on amino acid and peptide derivatives used for the release of many different species (drugs, fragrances, dyes, proteins, and cells) with a focus on the possible strategies to incorporate the cargo in these materials, and to demonstrate how versatile these self-assembled materials are in several applications.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Fabia Cenciarelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Gao F, Jiang H, Wang D, Wang S, Song W. Bio‐Inspired Magnetic‐Responsive Supramolecular‐Covalent Semi‐Convertible Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401645. [PMID: 38754860 DOI: 10.1002/adma.202401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Bio-inspired magnetic-responsive hydrogel is confined in exceedingly narrow spaces for soft robots and biomedicine in either gel state or magnetofluidic sol state. However, the motion of the gel state magnetic hydrogel will be inhibited in various irregular spaces due to the fixed shape and size and the sol-state magnetofluid gel may bring unpredictable residues in the confined narrow space. Inspired by the dynamic liquid lubricating mechanism of biological systems, novel magnetic-responsive semi-convertible hydrogel (MSCH) is developed through imbedding magnetic-responsive gelatin and amino-modified Fe3O4 nanoparticles network into the covalent network of polyvinyl alcohol, which can be switched between gel state and gel-sol state in response to magnetic stimuli. It can be attributed the disassembly of triple-helix structures of the gelatin under the action of the magnetic field, driven by force from the magnetic particles conjugated on the gelatin chain through electrostatic interactions, while the covalent network retains the hydrogel structural integrity. This leads to a sol layer on the MSCH surface enabling the MSCH to pass effectively through the confined channel or obstacle under magnetic field. The present MSCH will provide an alternative mode for magnetic field-related soft robots or actuators.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyue Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dayang Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Ghosh A, Maske P, Patel V, Dubey J, Aniket K, Srivastava R. Theranostic applications of peptide-based nanoformulations for growth factor defective cancers. Int J Biol Macromol 2024; 260:129151. [PMID: 38181914 DOI: 10.1016/j.ijbiomac.2023.129151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Growth factors play a pivotal role in orchestrating cellular growth and division by binding to specific cell surface receptors. Dysregulation of growth factor production or activity can contribute to the uncontrolled cell proliferation observed in cancer. Peptide-based nanoformulations (PNFs) have emerged as promising therapeutic strategies for growth factor-deficient cancers. PNFs offer multifaceted capabilities including targeted delivery, imaging modalities, combination therapies, resistance modulation, and personalized medicine approaches. Nevertheless, several challenges remain, including limited specificity, stability, pharmacokinetics, tissue penetration, toxicity, and immunogenicity. To address these challenges and optimize PNFs for clinical translation, in-depth investigations are warranted. Future research should focus on elucidating the intricate interplay between peptides and nanoparticles, developing robust spectroscopic and computational methodologies, and establishing a comprehensive understanding of the structure-activity relationship governing peptide-nanoparticle interactions. Bridging these knowledge gaps will propel the translation of peptide-nanoparticle therapies from bench to bedside. While a few peptide-nanoparticle drugs have obtained FDA approval for cancer treatment, the integration of nanostructured platforms with peptide-based medications holds tremendous potential to expedite the implementation of innovative anticancer interventions. Therefore, growth factor-deficient cancers present both challenges and opportunities for targeted therapeutic interventions, with peptide-based nanoformulations positioned as a promising avenue. Nonetheless, concerted research and development endeavors are essential to optimize the specificity, stability, and safety profiles of PNFs, thereby advancing the field of peptide-based nanotherapeutics in the realm of oncology research.
Collapse
Affiliation(s)
- Arnab Ghosh
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Priyanka Maske
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Vinay Patel
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Jyoti Dubey
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India
| | - Kundu Aniket
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| | - Rohit Srivastava
- Indian Institute of Technology Bombay, NanoBios lab, Department of Biosciences and Bioengineering, Mumbai, India.
| |
Collapse
|
5
|
Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels for biomedical applications. J Mater Chem B 2024; 12:1748-1774. [PMID: 38305498 DOI: 10.1039/d3tb02610h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Stimuli-responsive hydrogels can respond to external stimuli with a change in the network structure and thus have potential application in drug release, intelligent sensing, and scaffold construction. Peptides possess robust supramolecular self-assembly ability, enabling spontaneous formation of nanostructures through supramolecular interactions and subsequently hydrogels. Therefore, peptide-based stimuli-responsive hydrogels have been widely explored as smart soft materials for biomedical applications in the last decade. Herein, we present a review article on design strategies and research progress of peptide hydrogels as stimuli-responsive materials in the field of biomedicine. The latest design and development of peptide hydrogels with responsive behaviors to stimuli are first presented. The following part provides a systematic overview of the functions and applications of stimuli-responsive peptide hydrogels in tissue engineering, drug delivery, wound healing, antimicrobial treatment, 3D cell culture, biosensors, etc. Finally, the remaining challenges and future prospects of stimuli-responsive peptide hydrogels are proposed. It is believed that this review will contribute to the rational design and development of stimuli-responsive peptide hydrogels toward biomedical applications.
Collapse
Affiliation(s)
- Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yanhua Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Bingbing Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
6
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
7
|
Hajareh Haghighi F, Binaymotlagh R, Fratoddi I, Chronopoulou L, Palocci C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023; 9:953. [PMID: 38131939 PMCID: PMC10742474 DOI: 10.3390/gels9120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
9
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
10
|
Du H, Liu J, Pan B, Yang HY, Liu GB, Lu K. Fabrication of the low molecular weight peptide-based hydrogels and analysis of gelation behaviors. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Self-assembly in magnetic supramolecular hydrogels. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Du H, Wang L, Lu K, Pan B, Liu J. YAFAF-Based Hydrogel: Characterization, Mechanism, and Factors Influencing Micro-organization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10669-10679. [PMID: 35976795 DOI: 10.1021/acs.jafc.2c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The YAFAF-based hydrogel was a three-dimensional network cross-linked by grooved fiber bundles. The fiber bundles were formed by entanglement of fibrils with a diameter of 2 nm, and the surface of the fibrils also presented grooves. Spectroscopic analysis revealed that the main secondary structures were β-sheets and β-turns, which led to the grooved feature of fibrils. In comparison of the nuclear magnetic resonance spectra of peptide solutions at 313 and 277 K, the nuclear Overhauser effects can be clearly observed, indicating that hydrogen-bondings and π-π stacking interactions play important roles in self-assembly. The micro-organization of the self-assemblies was affected by the ratio of solvents (xA) remarkably. Unexpectedly, xA of 0.05 produced hollow spherical aggregates. The result of these investigations on the mechanism and organization of the YAFAF-based hydrogel can contribute to the development of strategies using hydrogels in the food industry.
Collapse
Affiliation(s)
- Heng Du
- Food Science and Technology, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Lan Wang
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Kui Lu
- Peptides Chemistry, School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Road, Zhengzhou, Henan 450044, People's Republic of China
| | - Boyuan Pan
- Peptides Chemistry, School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Jun Liu
- Chemical Analysis, College of Food Science and Engineering, Institute of Grain and Oil Standardization, Henan University of Technology, 100 Lianhua Road, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
13
|
Roy S, Adury VSS, Rao A, Roy S, Mukherjee A, Pillai PP. Electrostatically Directed Long-Range Self-Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angew Chem Int Ed Engl 2022; 61:e202203924. [PMID: 35506473 DOI: 10.1002/anie.202203924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Precise control over interparticle interactions is essential to retain the functions of individual components in a self-assembled superstructure. Here, we report the design of a multifunctional bioplasmonic network via an electrostatically directed self-assembly process involving adenosine 5'-triphosphate (ATP). The present study unveils the ability of ATP to undergo a long-range self-assembly in the presence of cations and gold nanoparticles (AuNP). Modelling and NMR studies gave a qualitative insight into the major interactions driving the bioplasmonic network formation. ATP-Ca2+ coordination helps in regulating the electrostatic interaction, which is crucial in transforming an uncontrolled precipitation into a kinetically controlled aggregation process. Remarkably, ATP and AuNP retained their inherent properties in the multifunctional bioplasmonic network. The generality of electrostatically directed self-assembly process was extended to different nucleotide-nanoparticle systems.
Collapse
Affiliation(s)
- Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Venkata Sai Sreyas Adury
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Soumendu Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
14
|
Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Nowak BP, Schlichter L, Ravoo BJ. Mediating Oxidation of Thioethers with Iodine—A Mild and Versatile Pathway to Trigger the Formation of Peptide Hydrogels. Angew Chem Int Ed Engl 2022; 61:e202201791. [PMID: 35274796 PMCID: PMC9314045 DOI: 10.1002/anie.202201791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/03/2022]
Abstract
The development of redox‐triggerable peptide hydrogels poses fundamental challenges, since the highly specific peptide architectures required inevitably limit the versatility of such materials. A powerful, yet rarely applied approach to bypass those barriers is the application of a mediating redox reaction to gradually decrease the pH during hydrogel formation. We report a versatile strategy to trigger the formation of peptide hydrogels from readily accessible acid‐triggerable gelators by generating protons by oxidation of thioethers with triiodide. Adding thiodiglycol as a readily available thioether auxiliary to the basic precursor solution of a peptide gelator efficiently yielded hydrogels after mixing with triiodide, as studied in detail for Nap‐FF and demonstrated for other peptides. Furthermore, incorporation of the thioether moiety in the gelator backbone via the amino acid methionine, as shown for the tailormade Nap‐FMDM peptide, reduces the number of required additives.
Collapse
Affiliation(s)
- Benedikt P. Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| | - Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Germany
| |
Collapse
|
16
|
Roy S, Adury VSS, Rao A, Roy S, Mukherjee A, Pillai PP. Electrostatically Directed Long‐Range Self‐Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumit Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Venkata Sai Sreyas Adury
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Anish Rao
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Soumendu Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Pramod P. Pillai
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| |
Collapse
|
17
|
Veloso SRS, Tiryaki E, Spuch C, Hilliou L, Amorim CO, Amaral VS, Coutinho PJG, Ferreira PMT, Salgueiriño V, Correa-Duarte MA, Castanheira EMS. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. NANOSCALE 2022; 14:5488-5500. [PMID: 35332904 DOI: 10.1039/d1nr08158f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels. The composites enable an enhancement of the gelation kinetics in a concentration-dependent manner, mainly through the use of PEGylated liposomes. The effect of the co-assembly of phenylalanine-coated nanoparticles with the hydrogel displays a concentration and size dependence. Finally, the integration of liposomes as doxorubicin storage units and of nanoparticles as composites that co-assemble with the gel matrix enables the tuneability of both passive and active doxorubicin release through a thermal, and a low-frequency alternating magnetic field-based trigger. In addition to the modulation of the gel properties, the functionalization with (di)phenylalanine improves the cytocompatibility of the nanoparticles. Hereby, this work paves a way for the development of peptide-based supramolecular systems for on-demand and controlled release of drugs.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ecem Tiryaki
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain.
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
18
|
Nowak BP, Schlichter L, Ravoo BJ. Mediating Oxidation of Thioethers with Iodine ‐ A Mild and Versatile Pathway to Trigger the Formation of Peptide Hydrogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benedikt P. Nowak
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Center for Soft Nanoscience GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Center for Soft Nanoscience GERMANY
| | - Bart Jan Ravoo
- Westfalische Wilhelms-Universitat Munster Organic Chemistry Institute Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
19
|
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022; 19:321-335. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the field of drug delivery, controlling the release of therapeutic substances at localized targets has become a primary focus of medical research, especially in the field of cancer treatment. Magnetic nanoparticles are one of the most promising drug carriers thanks to their biocompatibility and (super)paramagnetic properties. These properties allow for the combination between imaging modalities and specific release of drugs at target sites using either local stimulus (i.e. pH, conjugation of biomarkers, …) or external stimulus (i.e. external magnetic field). AREAS COVERED This review provides an update on recent advances with the development of targeted drug delivery systems based on magnetic nanoparticles (MNPs). This overview focuses on active targeting strategies and systems combining both imaging and therapeutic modalities (i.e. theranostics). If most of the examples concern the particular case of cancer therapy, the possibility of using MNPs for other medical applications is also discussed. EXPERT OPINION The development of clinically relevant drug delivery systems based on magnetic nanoparticles is driven by advantages stemming from their remarkable properties (i.e. easy preparation, facile chemical functionalization, biocompatibility, low toxicity and superior magnetic responsiveness). This literature review shows that drug carriers based on magnetic nanoparticles can be efficiently used for the controlled release of drug at targeted locations mediated by various stimuli. Advances in the field should lead to the implementation of such systems into clinical trials, especially systems enabling drug tracking in the body.
Collapse
Affiliation(s)
- D Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - T Vangijzegem
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - I Ternad
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - S Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| |
Collapse
|
20
|
Zhang R, Cao W, Xia Y, Zhang H, Ding Q, Xu X, Hu L. The relationship between solid-liquid interface interaction and gelling capacity of h-BN 2D material: a rheological study. NANOTECHNOLOGY 2022; 33:15LT02. [PMID: 34965518 DOI: 10.1088/1361-6528/ac46da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Diurea modified h-BN nanosheet is a novel kind of 2D gelator that could gel the lubricating oils under the stimulus of ultrasound. Morphological analyzations in previous study confirmed that the ultrasound induced layer-by-layer (LBL) structure of BN gelator is critical for the gelation. However, the elastic response in LBL structure, which is crucial for the formation of a stable gel system, has not been explicitly illustrated yet. The challenge is that the LBL gelator structure is based on 2D material and thus lacks vertical linkage between gelator layers, which is significantly different from the traditional gel systems that generally possess highly crosslinked gelator network. In this work, by investigating the viscoelastic behavior of the BN-based gel via rheometer, it is found the solid-liquid interface interaction, which is regulated by the diurea molecular structure in the BN gelator, is the key factor for triggering the stable elastic response in the LBL structure, and the elasticity mainly originates from the interface interaction induced bending deformation of h-BN 2D material. The findings further elucidate the gelling mechanism of BN gelators and enlighten the structure design of ultrasound-responsive gelator based on 2D materials.
Collapse
Affiliation(s)
- Ruochong Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Wenhui Cao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Xia
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Haojie Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Qi Ding
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xuefeng Xu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Litian Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Chu S, Wang AL, Bhattacharya A, Montclare JK. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012003. [PMID: 34950852 PMCID: PMC8691744 DOI: 10.1088/2516-1091/ac2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins are some of the most versatile and studied macromolecules with extensive biomedical applications. The natural and biological origin of proteins offer such materials several advantages over their synthetic counterparts, such as innate bioactivity, recognition by cells and reduced immunogenic potential. Furthermore, proteins can be easily functionalized by altering their primary amino acid sequence and can often be further self-assembled into higher order structures either spontaneously or under specific environmental conditions. This review will feature the recent advances in protein-based biomaterials in the delivery of therapeutic cargo such as small molecules, genetic material, proteins, and cells. First, we will discuss the ways in which secondary structural motifs, the building blocks of more complex proteins, have unique properties that enable them to be useful for therapeutic delivery. Next, supramolecular assemblies, such as fibers, nanoparticles, and hydrogels, made from these building blocks that are engineered to behave in a cohesive manner, are discussed. Finally, we will cover additional modifications to protein materials that impart environmental responsiveness to materials. This includes the emerging field of protein molecular robots, and relatedly, protein-based theranostic materials that combine therapeutic potential with modern imaging modalities, including near-infrared fluorescence spectroscopy (NIRF), single-photo emission computed tomography/computed tomography (SPECT/CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound/photoacoustic imaging (US/PAI).
Collapse
Affiliation(s)
- Stanley Chu
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrew L Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Molecular and Cellular Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Chemistry, NYU, New York, NY, USA
- Department of Biomaterials, NYU College of Dentistry, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
22
|
Singh U, Morya V, Datta B, Ghoroi C, Bhatia D. Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Front Chem 2021; 9:704234. [PMID: 34277571 PMCID: PMC8278982 DOI: 10.3389/fchem.2021.704234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.
Collapse
Affiliation(s)
- Udisha Singh
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Bhaskar Datta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| |
Collapse
|
23
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|