1
|
Nette J, Montanarella F, Zhu C, Sekh TV, Boehme SC, Bodnarchuk MI, Rainò G, Howes PD, Kovalenko MV, deMello AJ. Microfluidic synthesis of monodisperse and size-tunable CsPbBr 3 supraparticles. Chem Commun (Camb) 2023; 59:3554-3557. [PMID: 36880408 DOI: 10.1039/d3cc00093a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm).
Collapse
Affiliation(s)
- Julia Nette
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Federico Montanarella
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V Sekh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Simon C Boehme
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Philip D Howes
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
2
|
A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Liu Z, Liu Y, Yang J, Li S, Peng C, Cui X, Sheng L, Wu B. Highly Efficient and Controlled Fabrication of Supraparticles by Leidenfrost Phenomenon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9157-9165. [PMID: 35857373 DOI: 10.1021/acs.langmuir.2c00709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supraparticles (SPs) are agglomerates of smaller particles, which show promising applications in catalysis, sensing, and so forth. Preparation of SPs with controlled sizes, components, and structures in an efficient, scalable, and environmentally friendly way has become an urgent demand for the development of SPs. Herein, a method to fabricate SPs based on the Leidenfrost phenomenon is described. By dropping a nano-/microparticle dispersion on a metal plate at the Leidenfrost temperature (TLF) or higher, the solvent evaporates quickly, and SPs can be formed within 1 min. To understand the influence of various factors on the properties of SPs, and also to optimize the fabrication of SPs, the effects of metal surface roughness and primary particle concentration on TLF were carefully observed. Plates with a higher roughness as well as a higher primary particle concentration could trigger a lower TLF. Combining the regulation of composition and volume of the droplets, SPs with different sizes, compositions, and structures were precisely fabricated. Furthermore, highly porous titanium dioxide (TiO2) SPs with enhanced photocatalytic performance were fabricated via this method, showing the merits of the method in practical applications. This simple, efficient, and green method provides a new approach for controlled and large-scale fabrication of SPs with various functions.
Collapse
Affiliation(s)
- Zhe Liu
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yong Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jinge Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Shengsong Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Chaoyi Peng
- Zhuzhou Times New Materials Technology Co., Ltd, Zhuzhou 412007, P. R. China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
| | - Liping Sheng
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Binrui Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| |
Collapse
|