1
|
Awad MN, Brown SJ, Abraham AN, Sezer D, Han Q, Wang X, Le TC, Elbourne A, Bryant G, Greaves TL, Bryant SJ. Biophysical Characterization and Cryopreservation of Mammalian Cells Using Ionic Liquids. J Phys Chem B 2024; 128:2504-2515. [PMID: 38416751 DOI: 10.1021/acs.jpcb.3c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.
Collapse
Affiliation(s)
- Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amanda N Abraham
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Sezer
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Qi Han
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoying Wang
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Digital Services, Deakin University, Melbourne, Victoria 3008, Australia
| | - Tu C Le
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
2
|
Salvati Manni L, Fong WK, Wood K, Kirby N, Seibt S, Atkin R, Warr GG. H-bond network, interfacial tension and chain melting temperature govern phospholipid self-assembly in ionic liquids. J Colloid Interface Sci 2024; 657:320-326. [PMID: 38043233 DOI: 10.1016/j.jcis.2023.11.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
HYPOTHESIS The self-assembly structures and phase behaviour of phospholipids in protic ionic liquids (ILs) depend on intermolecular forces that can be controlled through changes in the size, polarity, and H-bond capacity of the solvent. EXPERIMENTS The structure and temperature stability of the self-assembled phases formed by four phospholipids in three ILs was determined by a combination of small- and wide-angle X-ray scattering (SAXS and WAXS) and small-angle neutron scattering (SANS). The phospholipids have identical phosphocholine head groups but different alkyl tail lengths and saturations (DOPC, POPC, DPPC and DSPC), while the ILs' amphiphilicity, H-bond network density and polarity are varied between propylammonium nitrate (PAN) to ethylammonium nitrate (EAN) to ethanolammonium nitrate (EtAN). FINDINGS The observed structures and phase behaviour of the lipids becomes more surfactant-like with decreasing average solvent polarity, H-bond network density and surface tension. In PAN, all the investigated phospholipids behave like surfactants in water. In EAN they exhibit anomalous phase sequences and unexpected transitions as a function of temperature, while EtAN supports structures that share characteristics with water and EAN. Structures formed are also sensitive to proximity to the lipid chain melting temperature.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Wye-Khay Fong
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Susanne Seibt
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Benedetto A. Ionic liquids meet lipid bilayers: a state-of-the-art review. Biophys Rev 2023; 15:1909-1939. [PMID: 38192351 PMCID: PMC10771448 DOI: 10.1007/s12551-023-01173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
In the past 25 years, a vast family of complex organic salts known as room-temperature ionic liquids (ILs) has received increasing attention due to their potential applications. ILs are composed by an organic cation and either an organic or inorganic anion, and possess several intriguing properties such as low vapor pressure and being liquid around room temperature. Several biological studies flagged their moderate-to-high (cyto)-toxicity. Toxicity is, however, also a synonym of affinity, and this boosted a series of biophysical and chemical-physical investigations aimed at exploiting ILs in bio-nanomedicine, drug-delivery, pharmacology, and bio-nanotechnology. Several of these investigations focused on the interaction between ILs and lipid membranes, aimed at determining the microscopic mechanisms behind their interaction. This is the focus of this review work. These studies have been carried out on a variety of different lipid bilayer systems ranging from 1-lipid to 5-lipids systems, and also on cell-extracted membranes. They have been carried out at different chemical-physical conditions and by the use of a number of different approaches, including atomic force microscopy, neutron and X-ray scattering, dynamic light scattering, differential scanning calorimetry, surface quartz microbalance, nuclear magnetic resonance, confocal fluorescence microscopy, and molecular dynamics simulations. The aim of this "2023 Michèle Auger Award" review work is to provide the reader with an up-to-date overview of this fascinating research field where "ILs meet lipid bilayers (aka biomembranes)," with the aim to boost it further and expand its cross-disciplinary edges towards novel high-impact ideas/applications in pharmacology, drug delivery, biomedicine, and bio-nanotechnology.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Department of Science, University of Roma Tre, Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
4
|
Bryant SJ, Awad MN, Elbourne A, Christofferson AJ, Martin AV, Meftahi N, Drummond CJ, Greaves TL, Bryant G. Deep eutectic solvents as cryoprotective agents for mammalian cells. J Mater Chem B 2022; 10:4546-4560. [PMID: 35670530 DOI: 10.1039/d2tb00573e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Andrew J Christofferson
- School of Science, College of STEM, RMIT University, Melbourne, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
5
|
Miao S, Hoffmann I, Gradzielski M, Warr GG. Lipid Membrane Flexibility in Protic Ionic Liquids. J Phys Chem Lett 2022; 13:5240-5245. [PMID: 35670673 DOI: 10.1021/acs.jpclett.2c00980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we determine by neutron spin echo spectrometry (NSE) how the flexibility of egg lecithin vesicles depends on solvent composition in two protic ionic liquids (PILs) and their aqueous mixtures. In combination with small-angle neutron scattering (SANS), dynamic light scattering (DLS), and fluorescent probe microscopy, we show that the bending modulus is up to an order of magnitude lower than in water but with no change in bilayer thickness or nonpolar chain composition. This effect is attributed to the dynamic association and exchange of the IL cation between the membrane and bulk liquid, which has the same origin as the underlying amphiphilic nanostructure of the IL solvent itself. This provides a new mechanism by which to tune and control lipid membrane behavior.
Collapse
Affiliation(s)
- Shurui Miao
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, Cedex 9, F-38042 Grenoble, France
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Bryant SJ, Brown SJ, Martin AV, Arunkumar R, Raju R, Elbourne A, Bryant G, Drummond CJ, Greaves TL. Cryopreservation of mammalian cells using protic ionic liquid solutions. J Colloid Interface Sci 2021; 603:491-500. [PMID: 34214724 DOI: 10.1016/j.jcis.2021.06.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Cryopreservation has facilitated considerable advances in both medical technology and scientific research. However, further developments have been limited by the relatively low number of effective cryoprotective agents. Even after fifty years of research, most protocols rely on the same two toxic agents, i.e. dimethylsulfoxide or glycerol. Ionic liquids are a class of promising solvents which are known glass formers and may offer a less-toxic alternative. The research presented here investigates ten protic ionic liquids as potential cryoprotective agents. The liquids are screened for key properties including cellular toxicity, permeability and thermal behaviour. The most promising, ethylammonium acetate, was then tested as a cryoprotective agent on a model cell line and was found to be as effective as the common cryoprotectant, dimethylsulfoxide. This work reports the first use of a protic ionic liquid as an effective cryoprotective agent for a mammalian cell line. This will inform the development of a suite of potential new ionic liquid-based cryoprotectants that could potentially allow the cryopreservation of new cell types.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Stuart J Brown
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Andrew V Martin
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Radhika Arunkumar
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Rekha Raju
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia.
| |
Collapse
|