1
|
Appavoo D, Azim N, Elshatoury M, Antony DX, Rajaraman S, Zhai L. Four-Dimensional Printing of Multi-Material Origami and Kirigami-Inspired Hydrogel Self-Folding Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5028. [PMID: 39459734 PMCID: PMC11509088 DOI: 10.3390/ma17205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Four-dimensional printing refers to a process through which a 3D printed object transforms from one structure into another through the influence of an external energy input. Self-folding structures have been extensively studied to advance 3D printing technology into 4D using stimuli-responsive polymers. Designing and applying self-folding structures requires an understanding of the material properties so that the structural designs can be tailored to the targeted applications. Poly(N-iso-propylacrylamide) (PNIPAM) was used as the thermo-responsive material in this study to 3D print hydrogel samples that can bend or fold with temperature changes. A double-layer printed structure, with PNIPAM as the self-folding layer and polyethylene glycol (PEG) as the supporting layer, provided the mechanical robustness and overall flexibility to accommodate geometric changes. The mechanical properties of the multi-material 3D printing were tested to confirm the contribution of the PEG support to the double-layer system. The desired folding of the structures, as a response to temperature changes, was obtained by adding kirigami-inspired cuts to the design. An excellent shape-shifting capability was obtained by tuning the design. The experimental observations were supported by COMSOL Multiphysics® software simulations, predicting the control over the folding of the double-layer systems.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Maged Elshatoury
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Dennis-Xavier Antony
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
2
|
Yang C, Mu GF, Liang X, Yan Q. Gas-Responsive and Gas-Releasing Polymer Assemblies. Chemphyschem 2024; 25:e202400413. [PMID: 38747673 DOI: 10.1002/cphc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 06/28/2024]
Abstract
In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas. In this review, we summarize the fundamental design rationale of gas-responsive and gas-releasing polymers in structure and their controlled transition in self-assembled morphology and function, as well as present some perspectives in this prosperous field. Emerging challenges faced for the future research are also discussed.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Gui-Fang Mu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No.220, Handan Rd., Shanghai, 200433, China
| |
Collapse
|
3
|
Sharma A, Rohne F, Vasquez-Muñoz D, Jung SH, Lomadze N, Pich A, Santer S, Bekir M. Selective Segregation of Thermo-Responsive Microgels via Microfluidic Technology. SMALL METHODS 2024:e2400226. [PMID: 39091063 DOI: 10.1002/smtd.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Separation of equally sized particles distinguished solely by material properties remains still a very challenging task. Here a simple separation of differently charged, thermo-responsive polymeric particles (for example microgels) but equal in size, via the combination of pressure-driven microfluidic flow and precise temperature control is proposed. The separation principle relies on forcing thermo-responsive microgels to undergo the volume phase transition during heating and therefore changing its size and correspondingly the change in drift along a pressure driven shear flow. Different thermo-responsive particle types such as different grades of ionizable groups inside the polymer matrix have different temperature regions of volume phase transition temperature (VPTT). This enables selective control of collapsed versus swollen microgels, and accordingly, this physical principle provides a simple method for fractioning a binary mixture with at least one thermo-responsive particle, which is achieved by elution times in the sense of particle chromatography. The concepts are visualized in experimental studies, with an intend to improve the purification strategy of the broad distribution of charged microgels into fractioning to more narrow distribution microgels distinguished solely by slight differences in net charge.
Collapse
Affiliation(s)
- Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Fabian Rohne
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | | | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials e.V., 52074, Aachen, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, or, Laboratory for Soft Materials and Interfaces, Department of Materials, Federal Institute of Technology Zurich, Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University, Geleen, 6167 RD, The Netherlands
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Dobos AM, Popa A, Rimbu CM, Filimon A. Structure-Bioactivity Relationship of the Functionalized Polysulfone with Triethylphosphonium Pendant Groups: Perspective for Biomedical Applications. Polymers (Basel) 2023; 15:polym15040877. [PMID: 36850167 PMCID: PMC9959649 DOI: 10.3390/polym15040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Development of new biomaterials based on polysulfones tailored to act in various biomedical fields represents a promising strategy which provides an opportunity for enhancing the diagnosis, prevention, and treatment of specific illnesses. To meet these requirements, structural modification of the polysulfones is essential. In this context, for design of new materials with long-term stability, enhanced workability, compatibility with biological materials and good antimicrobial activity, the functionalization of chloromethylated polysulfones with triethylphosphonium pendant groups (PSFEtP+) was adopted. The surface chemistry analysis (Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX)), rheological properties, morphological aspects (Scanning electron microscopy (SEM), polarized light microscopy (POM)), and antimicrobial activity of the synthetized polysulfone were investigated to establish the relationship between its structure and properties, as an important indicator for targeted applications. Based on the obtained features, evaluated by the relationship between the rheological properties and microstructural aspects, and also the response at the biomaterial-bacteria interface, these qualities have been confirmed in their performance, in terms of thermal stability, antimicrobial activity, and also an increase in lifetime. Consequently, derived results constitute the preliminary basis for future tests concerning their functionality as gel matrices in biomedical devices.
Collapse
Affiliation(s)
- Adina Maria Dobos
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Adriana Popa
- “Coriolan Dragulescu” Institute of Chemistry, Mihai Viteazul Blv., 24, 300223 Timisoara, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, University of Life Science Iasi, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania
| | - Anca Filimon
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
5
|
Rodchenko S, Kurlykin M, Tenkovtsev A, Milenin S, Sokolova M, Yakimansky A, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions. Polymers (Basel) 2022; 14:5118. [PMID: 36501510 PMCID: PMC9740392 DOI: 10.3390/polym14235118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the molecular shape of the studied samples of molecular brushes in the selective solvent. On the contrary, the grafting density is one of the most important factors determining the thermoresponsivity of grafted copolymers. It was shown that in analyzing self-organization and LCST values in aqueous solutions of poly-2-isopropyl-2-oxazolines with complex architecture, many factors should be considered. First is the molar fraction of the hydrophobic fragment and the intramolecular density. It was found that molar mass is not a factor that greatly affects the phase transition temperature of poly-2-isopropyl-2-oxazolines solutions at a passage from one molecular architecture to another.
Collapse
Affiliation(s)
- Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Sergey Milenin
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, Lenin Avenue, 125, 300026 Tula, Russia
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya, 70, 117393 Moscow, Russia
| | - Maria Sokolova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Yakimansky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia
| |
Collapse
|
6
|
Sharma A, Jung SH, Lomadze N, Pich A, Santer S, Bekir M. Adsorption Kinetics of a Photosensitive Surfactant Inside Microgels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjali Sharma
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167 RD Geleen, The Netherlands
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
8
|
Nothdurft K, Müller DH, Mürtz SD, Meyer AA, Guerzoni LPB, Jans A, Kühne AJC, De Laporte L, Brands T, Bardow A, Richtering W. Is the Microgel Collapse a Two-Step Process? Exploiting Cononsolvency to Probe the Collapse Dynamics of Poly- N-isopropylacrylamide (pNIPAM). J Phys Chem B 2021; 125:1503-1512. [PMID: 33503378 DOI: 10.1021/acs.jpcb.0c10430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many applications of responsive microgels rely on the fast adaptation of the polymer network. However, the underlying dynamics of the de-/swelling process of the gels have not been fully understood. In the present work, we focus on the collapse kinetics of poly-N-isopropylacrylamide (pNIPAM) microgels due to cononsolvency. Cononsolvency means that either of the pure solvents, e.g., pure water or pure methanol, act as a so-called good solvent, leading to a swollen state of the polymer network. However, in mixtures of water and methanol, the previously swollen network undergoes a drastic volume loss. To further elucidate the cononsolvency transition, pNIPAM microgels with diameters between 20 and 110 μm were synthesized by microfluidics. To follow the dynamics, pure water was suddenly exchanged with an unfavorable mixture of 20 mol% methanol (solvent-jump) within a microfluidic channel. The dynamic response of the microgels was investigated by optical and fluorescence microscopy and Raman microspectroscopy. The experimental data provide unique and detailed insight into the size-dependent kinetics of the volume phase transition due to cononsolvency. The change in the microgel's diameter over time points to a two-step process of the microgel collapse with a biexponential behavior. Furthermore, the dependence between the two time constants from this biexponential behavior and the microgel's diameter in the collapsed state deviates from the square-power law proposed by Tanaka and Fillmore [ J. Chem. Phys. 1979, 70, 1214-1218]. The deviation is discussed considering the adhesion-induced deformation of the gels and the physical processes underlying the collapse.
Collapse
Affiliation(s)
- Katja Nothdurft
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - David H Müller
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - Sonja D Mürtz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Anna A Meyer
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander Jans
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Alexander J C Kühne
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany
| | - Thorsten Brands
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062 Aachen, Germany.,Department of Mechanical and Process Engineering, ETH Zürich, Tannenstr. 3, 8092 Zürich, Switzerland
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|