1
|
Benyettou F, Khair M, Prakasam T, Varghese S, Matouk Z, Alkaabi M, Pena-Sánchez P, Boitet M, AbdulHalim R, Sharma SK, Ghemrawi R, Thomas S, Whelan J, Pasricha R, Jagannathan R, Gándara F, Trabolsi A. cRGD-Peptide Modified Covalent Organic Frameworks for Precision Chemotherapy in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56676-56695. [PMID: 39267454 PMCID: PMC11503616 DOI: 10.1021/acsami.4c10812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
This study presents the use of nanoscale covalent organic frameworks (nCOFs) conjugated with tumor-targeting peptides for the targeted therapy of triple-negative breast cancer (TNBC). While peptides have previously been used for targeted delivery, their conjugation with COFs represents an innovative approach in this field. In particular, we have developed alkyne-functionalized nCOFs chemically modified with cyclic RGD peptides (Alkyn-nCOF-cRGD). This configuration is designed to specifically target αvβ3 integrins that are overexpressed in TNBC cells. These nCOFs exhibit excellent biocompatibility and are engineered to selectively disintegrate under acidic conditions, allowing for precise and localized drug release in tumor environment. Doxorubicin, a chemotherapeutic agent, has been encapsulated in these nCOFs with high loading efficiency. The therapeutic potential of Alkyn-nCOF-cRGD has been demonstrated in vitro and in vivo models. It shows significantly improved drug uptake and targeted cell death in TNBC, highlighting the efficacy of receptor-mediated endocytosis and pH-controlled drug release. This strategy leverages the unique properties of nCOFs with targeted drug delivery to achieve significant advances in personalized cancer therapy and set a new standard for precision chemotherapeutic delivery.
Collapse
Affiliation(s)
- Farah Benyettou
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Mostafa Khair
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Sabu Varghese
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Zineb Matouk
- Technology
Innovative Institute, P.O. Box 9639, Abu Dhabi 9639, United Arab Emirates
| | - Maryam Alkaabi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Pilar Pena-Sánchez
- Instituto
de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de La Cruz 3, Madrid 28049, Spain
| | - Maylis Boitet
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Rasha AbdulHalim
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering
Division, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Rose Ghemrawi
- College
of Pharmacy, Al Ain University, P.O. Box 112612, Abu Dhabi 112612, United Arab Emirates
- AAU
Health and Biomedical Research Center, Al
Ain University, P.O. Box 112612, Abu Dhabi 112612, United Arab Emirates
| | - Sneha Thomas
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Jamie Whelan
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Renu Pasricha
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering
Division, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto
de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de La Cruz 3, Madrid 28049, Spain
| | - Ali Trabolsi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
3
|
Meng T, Wang X, Jiang S, Chen SR, Zhou S, Zhu Y, Wu J, Hu D, Yan Y, Zhang G. Delivery of Small-Molecule Drugs and Protein Drugs by Injectable Acid-Responsive Self-Assembled COF Hydrogels for Combinatorial Lung Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42354-42368. [PMID: 37642201 DOI: 10.1021/acsami.3c10074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Covalent organic frameworks (COFs) have revealed enormous application prospects for cancer therapeutics recently, but their assembly systems face considerable challenges, such as the codelivery of hydrophobic and hydrophilic protein drugs with different physicochemical properties for in vivo delivery and release, as well as endosomal/lysosomal escape of protein drugs. To address these issues, we leveraged the high specific surface area, lipotropism, and structural tunability of boronate ester-linked COFs (COF-1) for the construction of advanced drug delivery systems. We first encapsulated the small-molecule drug doxorubicin (DOX) into a lipophilic COF (COF-1@DOX) and immobilized the functional protein drug ribonuclease A (RNase A) on the surface of the COF (RNase A-COF-1@DOX). We then created a novel composite delivery system (RNase A-COF-1@DOX gel) by cross-linking an albumin-oxygenated hydrogel (gel) network into the pores of COFs, allowing targeted codelivery of protein and small-molecule drugs in vivo. Using in-living body and multichannel fluorescence imaging, we analyzed the in vivo codelivery of protein and small-molecule drugs in a Lewis lung carcinoma (LLC) model. Finally, we applied the RNase A-COF-1@DOX gel to treat lung cancer in mice. This study paves an avenue for constructing COF-based drug delivery systems for lung cancer treatment and holds the potential to be extended to other types of cancer for more effective and targeted therapeutic treatments.
Collapse
Affiliation(s)
- Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shangshang Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Si-Rui Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, 999077 Hong Kong SAR, China
| | - Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuheng Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuwen Yan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
5
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
6
|
Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A Ferrocene-Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101368. [PMID: 34216420 DOI: 10.1002/smll.202101368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
7
|
Liao C, Liu S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J Mater Chem B 2021; 9:6116-6128. [PMID: 34278394 DOI: 10.1039/d1tb01124c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the first report by Yaghi's group in 2005, research enthusiasm has been increasingly raised to synthesize diverse crystalline porous materials as -B-O-, -C-N-, -C-C-, and -C-O- linkage-based COFs. Recently, the biomedical applications of COFs have become more and more attractive in biomedical applications, including drug delivery, bioimaging, biosensing, antimicrobial, and therapeutic applications, as these materials bear well-defined crystalline porous structures and well-customized functionalities. However, the clinical translation of these research findings is challenging due to the formidable hindrances for in vivo use, such as low biocompatibility, poor selectivity, and long bio-persistence. Some attempts have raised a promising solution towards these obstacles by tailored engineering the functionalities of COFs. To speed up the clinical translations of COFs, a short review of principles and strategies to tune the physicochemical properties of COFs is timely and necessary. In this review, we summarized the biomedical utilities of COFs and discussed the related key physicochemical properties. To improve the performances of COFs in biomedical uses, we propose approaches for the tailored functionalization of COFs, including large-scale manufacture, standardization in nanomedicines, enhancing targeting efficacy, maintaining predesigned functions upon transformations, and manipulation of multifunctional COFs. We expect that this minireview strengthens the fundamental understandings of property-bioactivity relationships of COFs and provides insights for the rational design of their high-order reticular structures.
Collapse
Affiliation(s)
- Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|
8
|
Zhou S, Hu D, Fang Z, Zhang G. Covalent organic framework-based assembly systems for the intracellular delivery of proteins: opportunities and challenges. Nanomedicine (Lond) 2021; 16:1259-1262. [PMID: 33988034 DOI: 10.2217/nnm-2021-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhirui Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
9
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
10
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
11
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
12
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|