1
|
Sun R, Han S, Zong W, Chu H, Zhang X, Jiang H. Ultrasensitive detection of chlortetracycline in animal-origin food using molecularly imprinted electrochemical sensor based on SnS 2/ZnCo-MOF and AuNPs. Food Chem 2024; 452:139537. [PMID: 38728891 DOI: 10.1016/j.foodchem.2024.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The chlortetracycline (CTC) residue in food poses a threat to human health. Therefore, developing sensitive, convenient and selective analytical methods for CTC detection is crucial. This study innovatively uses tin disulfide/bimetallic organic framework (SnS2/ZnCo-MOF) nanocomposites in conjunction with gold nanoparticles (AuNPs) to co-modify a glassy carbon electrode (GCE). Further, a molecularly imprinted polymer (MIP)-based electrochemical sensing platform Au-MIP/SnS2/ZnCo-MOF/Au/GCE (AZG) was fabricated for selective CTC detection. SnS2/ZnCo-MOF enhanced the stability and surface area of the AZG sensor. The presence of AuNPs facilitated electron transport between the probe and the electrode across the insulating MIP layer. The fixation of AuNPs and MIP via electropolymerization enhanced the selective recognition of this sensor and amplified its output signal. The AZG sensor demonstrated a wide linear detection range (0.1-100 μM), low detection limit (0.072 nM), and high sensitivity (0.830 μA μM-1). It has been used for detecting CTC in animal-origin food with good recovery (96.08%-104.60%).
Collapse
Affiliation(s)
- Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Haiyan Jiang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
2
|
Jin X, Nodehi M, Baghayeri M, Xu Y, Hua Z, Lei Y, Shao M, Makvandi P. Development of an impedimetric sensor for susceptible detection of melatonin at picomolar concentrations in diverse pharmaceutical and human specimens. ENVIRONMENTAL RESEARCH 2023; 238:117080. [PMID: 37683787 DOI: 10.1016/j.envres.2023.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Our investigation aimed to create and manufacture an electrochemical impedance sensor with the purpose of improving the detection efficiency of melatonin (ME). To achieve this objective, we employed gold nanoparticles coated on polydopamine formed in glassy carbon electrodes (AuNPs/PDA/GCE) as a means to enhance the sensor's capabilities. A novel approach employing the signal-off strategy and electrochemical impedance spectroscopy (EIS) technique was utilized to determine ME. When the AuNPs/PDA/GCE electrode was immersed in a buffered solution containing ME, and the oxidation current of AuNPs was recorded, it was observed that the oxidation current of AuNPs decreased upon the introduction of ME molecules. The decrease in electrical current can be ascribed to the inhibitory impact of ME molecule adsorption on the electrode surface with applying -0.2 V for 150 s in acetate buffer solution (ABS) (pH, 5) through various mechanisms, which hinders the electron transfer process crucial for AuNPs oxidation. Consequently, by utilizing EIS, various concentrations of ME were quantified spanning from 1 to 18 pM. Moreover, the ME sensor achieved an impressive detection limit of 0.32 pM, indicating its remarkable sensitivity in detecting low concentrations of ME. Importantly, these novel sensors demonstrated exceptional attributes in terms of sensitivity, specificity, stability, and repeatability. The outstanding performance of these sensors, coupled with their desirable attributes, establishes their considerable potential for a wide range of practical applications. These applications encompass various fields such as clinical diagnostics, pharmaceutical analysis, environmental monitoring, and industrial quality control, where accurate and sensitive detection of ME is of utmost importance.
Collapse
Affiliation(s)
- Xuru Jin
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMedical Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhidan Hua
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000 PR China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
3
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor for simultaneous determination of trifluoperazine and dopamine in human serum based on graphene oxide-carbon nanotubes/iron-nickel nanoparticles. RSC Adv 2023; 13:25209-25217. [PMID: 37622009 PMCID: PMC10445055 DOI: 10.1039/d3ra04334g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Trifluoperazine (TFLP) is an important psychiatric medication that balances the dopamine (DA) level in the brain for patients suffering from neurological disorder diseases. An efficient electrochemical sensor is developed for detecting TFLP in real human serum samples. The sensor is fabricated by casting the GC surface with two consecutive thin layers, namely a graphene oxide-carbon nanotubes mixture (GRO-CNT), and iron-nickel nanoparticles (Fe-Ni). The diffusion-controlled oxidation process of TFLP at the composite surface includes one electron transfer process. Under optimized conditions, the sensor in human serum shows excellent catalytic effect for simultaneous determination of TFLP and dopamine (DA) in the same concentration range (0.5 μM to 18 μM) with low detection limits of 0.13 μM and 0.32 μM respectively. The combined effect of a large conductive surface area and the excellent catalytic activity of the nanocomposite improves the sensor's performance. The sensor exhibits a stable current response over four weeks, excellent reproducibility, and insignificant interference from common species present in human serum samples. The reliability test of using the sensor in serum samples shows good recovery of TFLP.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| |
Collapse
|
4
|
Yang B, Li H, Nong C, Li X, Feng S. A novel electrochemical immunosensor based on SnS 2/NiCo metal-organic frameworks loaded with gold nanoparticles for cortisol detection. Anal Biochem 2023; 669:115117. [PMID: 36934959 DOI: 10.1016/j.ab.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
In this work, a label-free electrochemical immunosensor using tin sulfide/nickel cobalt metal-organic frameworks (SnS2/NiCo MOFs) was established for the sensitive etection of cortisol. First, SnS2/NiCo MOFs were synthesized by doping SnS2 with NiCo MOF nanocubes by a hydrothermal method. Then, gold nanoparticles (AuNPs) were grown in situ on SnS2/NiCo MOFs for electrochemical detection. The use of SnS2/NiCo MOFs promoted the electron transfer rate of AuNPs and enhanced the electrochemical sensing performance of AuNPs@SnS2/NiCo MOFs-modified electrodes. The large specific surface area of AuNPs@SnS2/NiCo MOFs provides more active sites for antibody loading. After the prepared immunosensor was incubated with the target analyte, cortisol, the electron transfer impedance increased and the amperometric response decreased, thus establishing a highly sensitive immunosensing method. The sensor had a linear range of 100 fg/mL to 100 ng/mL and a low detection limit of 29 fg/mL. The sensor showed good accuracy and practicability and could be used for the determination of cortisol in saliva.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Heng Li
- The First Clinical Institute, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Cuijie Nong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaokun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Suxiang Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Sakthivel R, Liu TY, Chung RJ. Bimetallic Cu 5Zn 8 alloy-embedded hollow porous carbon nanocubes derived from 3D-Cu/ZIF-8 as efficient electrocatalysts for environmental pollutant detection in water bodies. ENVIRONMENTAL RESEARCH 2023; 216:114609. [PMID: 36272591 DOI: 10.1016/j.envres.2022.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 μA μМ-1 cm-2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
6
|
Diko CS, Abitonze M, Liu Y, Zhu Y, Yang Y. Synthesis and Applications of Dimensional SnS 2 and SnS 2/Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4497. [PMID: 36558350 PMCID: PMC9786647 DOI: 10.3390/nano12244497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Dimensional nanomaterials can offer enhanced application properties benefiting from their sizes and morphological orientations. Tin disulfide (SnS2) and carbon are typical sources of dimensional nanomaterials. SnS2 is a semiconductor with visible light adsorption properties and has shown high energy density and long cycle life in energy storage processes. The integration of SnS2 and carbon materials has shown enhanced visible light absorption and electron transmission efficiency. This helps to alleviate the volume expansion of SnS2 which is a limitation during energy storage processes and provides a favorable bandgap in photocatalytic degradation. Several innovative approaches have been geared toward controlling the size, shape, and hybridization of SnS2/Carbon composite nanostructures. However, dimensional nanomaterials of SnS2 and SnS2/Carbon have rarely been discussed. This review summarizes the synthesis methods of zero-, one-, two-, and three-dimensional SnS2 and SnS2/Carbon composite nanomaterials through wet and solid-state synthesis strategies. Moreover, the unique properties that promote their advances in photocatalysis and energy conversion and storage are discussed. Finally, some remarks and perspectives on the challenges and opportunities for exploring advanced SnS2/Carbon nanomaterials are presented.
Collapse
Affiliation(s)
| | - Maurice Abitonze
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yining Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yimin Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yan Yang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, China
| |
Collapse
|
7
|
An electrochemical chiral sensor for amino acids based on cyclodextrin modified thiophene-based copolymer. Carbohydr Polym 2022; 297:120012. [DOI: 10.1016/j.carbpol.2022.120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
8
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
9
|
Nanoarchitectured nickel phosphate integrated with graphene oxide for the toxicant diphenylamine detection in food samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Fu D, Liu H, Chen T, Cheng Y, Cao M, Liu J. A bio-analytic nanoplatform based on Au post-functionalized CeFeO 3 for the simultaneous determination of melatonin and ascorbic acid through photo-assisted electrochemical technology. Biosens Bioelectron 2022; 213:114457. [PMID: 35724554 DOI: 10.1016/j.bios.2022.114457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Both melatonin and ascorbic acid could perform an irreplaceable role in maintaining the ecological balance of the human body and fighting cardiovascular diseases. Herein, a dual-channel photo-assisted electrochemical sensor has been fabricated based on Au post-functionalized CeFeO3 nanospheres to simultaneously monitor melatonin and ascorbic acid for the first time. Briefly, CeFeO3 nanospheres are prepared through a hydrothermal and annealing process, and then the reduced Au nanoclusters are anchored on the surface of spheres to afford the CeFeO3@Au bi-nanospherical sensing probe. Impressively, the pre-fabricated sensor can produce a current signal 11% higher under light than that produced in a dark environment during the electrochemical measurements. Subsequently, the sensor fabricated by our strategy has achieved the simultaneous determination of melatonin and ascorbic acid with the wide detecting ranges of 1 nM-5 μM and 1 nM to 2 μM, and low detection limits of 0.8 nM and 0.4 nM by electrochemical measurements with the presence of the sunlight, and has shown satisfactory recoveries in the real sample measurements, demonstrating that the CeFeO3@Au bi-nanospherical sensing probe will be an auspicious candidate of advanced electrode material in photo-assisted electrochemical sensing applications.
Collapse
Affiliation(s)
- Donglei Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Tao Chen
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yujun Cheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Mengyu Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Fritea L, Tertiș M, Cristea C, Sandulescu R. Exploring the research progress about the applications of cyclodextrins and nanomaterials in electroanalysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Cecilia Cristea
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| | - Robert Sandulescu
- University of Medicine and Pharmacy Iuliu Hatieganu, Faculty of Pharmacy ROMANIA
| |
Collapse
|
12
|
Ji J, Qu L, Wang Z, Li G, Feng W, Yang G. A facile electrochemical chiral sensor for tryptophan enantiomers based on multiwalled carbon nanotube/hydroxypropyl-β-cyclodextrin functionalized carboxymethyl cellulose. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Liu R, Li B, Li F, Dubovyk V, Chang Y, Li D, Ding K, Ran Q, Wang G, Zhao H. A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem 2022; 384:132573. [PMID: 35245753 DOI: 10.1016/j.foodchem.2022.132573] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
Carbendazim (CBZ) abuse always causes the over-standard of pesticide residues in agricultural products, which has adverse effects on human health. Herein, a novel electrochemical sensor was firstly fabricated based on the β-cyclodextrin (β-CD) functionalized carbon nanosheets@carbon nanotubes (CNS@CNT) for the CBZ determination. CNS@CNT combined large surface area of CNS and excellent electrical conductivity of CNT, which significantly enhanced the electrocatalytic performance. Moreover, β-CD possessed excellent host-gest supramolecular recognition ability, which could improve the selective recognition and enrichment capability of CBZ. Thanks to the synergistic interaction of CNS@CNT and β-CD, the β-CD/CNS@CNT/GCE sensor exhibited a low limit of detection of 9.4 nM in the linear CBZ concentration range of 0.03-30 μM. The fabricated sensor presented favorable stability, high sensitivity (30.86 μA μM-1 cm-2), and reliable reproducibility (RSD = 3.6%). Especially, the β-CD/CNS@CNT/GCE sensor could show pretty practical feasibility for the detection of CBZ in apple juice with recoveries of 97.1%-99.4%.
Collapse
Affiliation(s)
- Runqiang Liu
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Li
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fang Li
- Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | | | - Yuqi Chang
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongdong Li
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kunjie Ding
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qiwen Ran
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Guifang Wang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China.
| | - Hongyuan Zhao
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
14
|
Healy B, Yu T, C. da Silva Alves D, Okeke C, Breslin CB. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1668. [PMID: 33800708 PMCID: PMC8036645 DOI: 10.3390/ma14071668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Supramolecular chemistry, although focused mainly on noncovalent intermolecular and intramolecular interactions, which are considerably weaker than covalent interactions, can be employed to fabricate sensors with a remarkable affinity for a target analyte. In this review the development of cyclodextrin-based electrochemical sensors is described and discussed. Following a short introduction to the general properties of cyclodextrins and their ability to form inclusion complexes, the cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and electropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents and biosensors and in the electrochemical detection of environmental contaminants, biomolecules and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed, it is clear that cyclodextrins are promising molecular recognition agents in the creation of electrochemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including the development of more robust methods for the integration of cyclodextrins into the sensing unit.
Collapse
Affiliation(s)
- Bronach Healy
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Tian Yu
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 90040-060, Brazil
| | - Cynthia Okeke
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| |
Collapse
|