1
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
2
|
Xu K, Zhang Y, Cheng H, Chen W, Chen C, Zhang M, Song H, Wang F. Triple-negative breast cancer treatment with core-shell Magnetic@Platinium-Metal organic framework/epirubicin nano-platforms for chemo-photodynamic based combinational therapy: A review. Medicine (Baltimore) 2024; 103:e39845. [PMID: 39331917 PMCID: PMC11441927 DOI: 10.1097/md.0000000000039845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.
Collapse
Affiliation(s)
- Kangjie Xu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng, China
| | - Hui Cheng
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Weipeng Chen
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Cheng Chen
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| | - Minglei Zhang
- Department of Oncology, Binhai County People's Hospital, Yancheng, China
| | - He Song
- Department of Rehabilitation Medicine, Kanda College of Nanjing Medical University, Lianyungang, China
| | - Feng Wang
- Department of General Surgery, Binhai County People's Hospital, Yancheng, China
| |
Collapse
|
3
|
Liang JG, Gao WX, Chung CW, Dayao LA, Chou HH, Lin ZH, Wan D, Huang JH, Chen YC, Lu TT. Structure-dependent magnetoelectric and magnetothermal effects of MOF-derived zero-valence cobalt and iron oxide nanoparticles on a carbonaceous matrix. Chem Commun (Camb) 2024; 60:10136-10139. [PMID: 39189125 DOI: 10.1039/d4cc03743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
For the first time, the dominant magnetoelectric activity of ZIF-67-derived carbonaceous microparticles embedded with Co nanoparticles and distinctive magnetothermal effect of MIL-88B-derived Fe3O4 nanocubes decorated on carbonaceous microrods, respectively, were explored to be controlled by the structure of the MOF-derived electrically conductive carbonaceous matrix and metal nanoparticles.
Collapse
Affiliation(s)
- Jing-Guan Liang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Wei-Xiang Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
4
|
Reviansyah FH, Putra DRD, Supriatna JA, Takarini V, Komariah M. Green Dentistry in Oral Cancer Treatment Using Biosynthesis Superparamagnetic Iron Oxide Nanoparticles: A Systematic Review. Cancer Manag Res 2024; 16:1231-1245. [PMID: 39282609 PMCID: PMC11402364 DOI: 10.2147/cmar.s477791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Oral cancer is a worldwide health issue with high incidence and mortality, demands an effective treatment to improve patient prognosis. Superparamagnetic iron oxide nanoparticles (SPIONs) emerged as a candidate for oral cancer treatment due to their unique attributes, enabling a synergistic combination with its drug-delivery capabilities and hyperthermia when exposed to magnetic fields. SPIONs can be synthesized using biopolymers from agricultural waste like lignin from paddy, which produce biogenic nano iron oxide with superparamagnetic and antioxidant effects. In addition, lignin also acts as a stabilizing agent in creating SPIONs. This study aimed to explore how agricultural waste could be used to prepare SPIONs using the green synthesis method and to evaluate its potential for oral cancer specifically focusing on its effectiveness, side effects, biocompatibility, and toxicity. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. PubMed, EBSCO, and Scopus databases were exploited in the selection of articles published within the last decade. This study quality assessment uses OHAT for critical appraisal tools. Only 10 studies met the inclusion criteria. The findings suggest that the use of agricultural waste in the preparation of SPIONs not only holds potency for oral cancer treatment through drug delivery and hyperthermia but also aligns with the concept of green dentistry. SPIONs as a treatment modality for oral cancer have demonstrated notable effectiveness and versatility. This study provides robust evidence supporting green dentistry by using agricultural waste in the preparation and formulation of SPIONs for managing oral cancer. Its multifunctional nature and ability to enhance treatment efficacy while minimizing adverse effects on healthy tissues highlights the potency of SPION-based oral cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Veni Takarini
- Department of Dental Materials and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
- Oral Biomaterials Research Centre, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
| | - Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Padjadjaran University, Bandung, 40132, Indonesia
| |
Collapse
|
5
|
Yang Y, Dai X. Current status of controlled onco-therapies based on metal organic frameworks. RSC Adv 2024; 14:12817-12828. [PMID: 38645527 PMCID: PMC11027480 DOI: 10.1039/d4ra00375f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Despite consecutive efforts devoted to the establishment of innovative therapeutics for cancer control, cancer remains as a primary global public health concern. Achieving controlled release of anti-cancer agents may add great value to the field of oncology that requires the involvement of nanotechnologies. Metal organic frameworks (MOFs) hold great promise in this regard owing to their unique structural properties. MOFs can act as superior candidates for drug delivery given their porous structure and large loading area, and can be prepared into anti-cancer therapeutics by incorporating stimuli-sensitive components into the ligands or nodes of the framework. By combing through chemical and physical features of MOFs favorable for onco-therapeutic applications and current cancer treatment portfolios taking advantages of these characteristics, this review classified MOFs feasible for establishing controlled anti-cancer modalities into 6 categories, outlined the corresponding strategies currently available for each type of MOF, and identified understudied areas and future opportunities towards innovative MOF design for improved or expanded clinical anti-cancer applications.
Collapse
Affiliation(s)
- Yixuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P.R. China
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P.R. China
| |
Collapse
|
6
|
Zhang L, Li Q, Liu J, Deng Z, Zhang X, Alifu N, Zhang X, Yu Z, Liu Y, Lan Z, Wen T, Sun K. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf B Biointerfaces 2024; 234:113754. [PMID: 38241891 DOI: 10.1016/j.colsurfb.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qifan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Junxiao Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Zunyi Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xueliang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China; State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaofeng Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhong Yu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tianlong Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
7
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
8
|
Maduabuchi WO, Tansi FL, Faenger B, Southern P, Pankhurst QA, Steiniger F, Westermann M, Hilger I. Local Magnetic Hyperthermia and Systemic Gemcitabine/Paclitaxel Chemotherapy Triggers Neo-Angiogenesis in Orthotopic Pancreatic Tumors without Involvement of Auto/Paracrine Tumor Cell VEGF Signaling and Hypoxia. Cancers (Basel) 2023; 16:33. [PMID: 38201461 PMCID: PMC10778317 DOI: 10.3390/cancers16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in combination with chemotherapy selectively affects growth, the vascular compartment of tumors, and the presence of tumor cells expressing key regulators of angiogenesis. To that purpose, a orthotopic PANC-1 (fluorescent human pancreatic adenocarcinoma) mouse tumor model (Rj:Athym-Foxn1nu/nu) was used. Magnetic hyperthermia was applied alone or in combination with systemic chemotherapy (gemcitabine 50 mg per kg body weight, nab-pacitaxel 30 mg/kg body weight) on days 1 and 7 following magnetic nanoparticle application (dose: 1 mg per 100 mm3 of tumor). We used ultrasound imaging, immunohistochemistry, multi-spectral optoacoustic tomography (MSOT), and hematology to assess the biological parameters mentioned above. We found that magnetic hyperthermia in combination with gemcitabine/paclitaxel chemotherapy was able to impact tumor growth (decreased volumes and Ki67 expression) and to trigger neo-angiogenesis (increased small vessel diameter) as a result of the therapeutically mediated cell damages/stress in tumors. The applied stressors activated specific pro-angiogenic mechanisms, which differed from those seen in hypoxic conditions involving HIF-1α, since (a) treated tumors showed a significant decrease of cells expressing VEGF, CD31, HIF-1α, and neuropilin-1; and (b) the relative tumor blood volume and oxygen level remained unchanged. Neo-angiogenesis seems to be the result of the activation of cell stress pathways, like MAPK pathways (high number of pERK-expressing tumor cells). In the long term, the combination of magnetic hyperthermia and chemotherapy could potentially be applied to transiently modulate tumor angiogenesis and to improve drug accessibility during oncologic therapies of pancreatic cancer.
Collapse
Affiliation(s)
- Wisdom O. Maduabuchi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (F.L.T.); (B.F.)
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (F.L.T.); (B.F.)
| | - Bernd Faenger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (F.L.T.); (B.F.)
| | - Paul Southern
- Resonant Circuits Limited, 21 Albemarle Street, London W1S 4BS, UK; (P.S.); (Q.A.P.)
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle St., London W1S 4BS, UK
| | - Quentin A. Pankhurst
- Resonant Circuits Limited, 21 Albemarle Street, London W1S 4BS, UK; (P.S.); (Q.A.P.)
- Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle St., London W1S 4BS, UK
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany; (F.S.); (M.W.)
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany; (F.S.); (M.W.)
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (F.L.T.); (B.F.)
| |
Collapse
|
9
|
Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q. Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 2023; 261:115884. [PMID: 37862817 DOI: 10.1016/j.ejmech.2023.115884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Dongwei Ma
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Gang Wang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Jingsheng Lu
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Xiaoxuan Zeng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Yanwei Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| |
Collapse
|
10
|
Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, Ghahramani Y, Lai CW, Chiang WH, Gholami A. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4685. [PMID: 37444999 DOI: 10.3390/ma16134685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Milad Dehdashtijahromi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Yasamin Ghahramani
- Associate Professor of Endodontics Department of Endodontics, School of Dentistry Oral and Dental Disease Research Center Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
11
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
12
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
13
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
14
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
15
|
Cui F, Liu J, Pang S, Li B. Recent Advance in Tumor Microenvironment-Based Stimuli-Responsive Nanoscale Drug Delivery and Imaging Platform. Front Pharmacol 2022; 13:929854. [PMID: 35935835 PMCID: PMC9354407 DOI: 10.3389/fphar.2022.929854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development, progression, and metastasis of cancer, and the extremely crucial feature is hypoxic and acidic. Cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal cells, blood vessels, and interstitial fluid are widely recognized as fundamentally crucial hallmarks for TME. As nanotechnology briskly boomed, the nanoscale drug delivery and imaging platform (NDDIP) emerged and has attracted intensive attention. Based on main characteristics of TME, NDDIP can be classified into pH-sensitive delivery and imaging platforms, enzyme-sensitive delivery and imaging platforms, thermo-sensitive delivery and imaging platforms, redox-sensitive delivery and imaging platforms, and light-sensitive delivery and imaging platforms. Furthermore, imageology is one of the significant procedures for disease detection, image-guided drug delivery, and efficacy assessment, including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and fluorescence imaging. Therefore, the stimuli-responsive NDDIP will be a versatile and practicable tumor disease diagnostic procedure and efficacy evaluation tool. In this review article, we mainly introduce the characteristics of TME and summarize the progress of multitudinous NDDIP as well as their applications.
Collapse
Affiliation(s)
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | | | - Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Saleh MR, Thabet SM, El-Gendy RA, Saleh M, El-Bery HM. MIL−53 (Fe) for constructing hydrogenated Fe3O4@C@TiO2 double core-shell nanocrystals as superior bifunctional photocatalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
19
|
Chung CW, Liao BW, Huang SW, Chiou SJ, Chang CH, Lin SJ, Chen BH, Liu WL, Hu SH, Chuang YC, Lin CH, Hsu IJ, Cheng CM, Huang CC, Lu TT. Magnetic Responsive Release of Nitric Oxide from an MOF-Derived Fe 3O 4@PLGA Microsphere for the Treatment of Bacteria-Infected Cutaneous Wound. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6343-6357. [PMID: 35080366 DOI: 10.1021/acsami.1c20802] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(μ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.
Collapse
Affiliation(s)
- Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Wen Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Wei Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Cheng-Han Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Ju Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Ling Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
21
|
Liu Y, Jiang T, Liu Z. Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics 2022; 6:143-160. [PMID: 34976590 PMCID: PMC8671950 DOI: 10.7150/ntno.63458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs), composited with metal ions and organic linkers, have become promising candidates in the biomedical field own to their unique properties, such as high surface area, pore-volume, tunable pore size, and versatile functionalities. In this review, we introduce and summarize the synthesis and characterization methods of MOFs, and their bioimaging applications, including optical bioimaging, magnetic resonance imaging (MRI), computed tomography (CT), and multi-mode. Furthermore, their bioimaging strategies, remaining challenges and future directions are discussed and proposed. This review provides valuable references for the designing of molecular bioimaging probes based on MOFs.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
22
|
Li M, Xiao M, Pan Q, Xiong J. Multifunctional nanoplatform based on g-C 3N 4, loaded with MnO 2 and CuS nanoparticals for oxygen self-generation photodynamic/photothermal synergistic therapy. Photodiagnosis Photodyn Ther 2021; 37:102684. [PMID: 34923155 DOI: 10.1016/j.pdpdt.2021.102684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are both promising therapeutic approaches for cancer. Unfortunately, the anticancer efficiency of PDT is restricted by the hypoxic tumor microenvironment and the performance of the photosensitizer (PS) while the efficiency of PTT is limited by the penetration depth of NIR light, making it difficult to further improve the efficiency of the treatment. In this paper, we strategically proposed a multifunctional nano-platform based on g-C3N4 and loaded with CuS and MnO2 nanoparticals. Interestingly, the obtained F127@CNs-CuS/MnO2 nano-platform with high singlet oxygen quantum yield and excellent photothermal performance were used in synergistic PTT and PDT therapy to cope with the limitation of single mode cancer treatment under irradiation and has greatly improved the treatment effect. Additionally, MnO2 nanoparticles loaded on the CNs surface could not only generate oxygen to ameliorate hypoxia in the tumor environment by reacting with H2O2 in tumor cells, but also react with the over-expressed reduced glutathione (GSH) in cancer cells to further improve the synergistic therapeutic effect. In the in vitro hepatocarcinoma cell inactivation experiment, the maximum cell inactivation efficiency of the PDT, PTT and PDT/PTT synergistic treatment group reached at 65% (F127@CNs-MnO2), 69.2% (CNs-MnO2) and 88.6% (F127@CNs-MnO2) respectively, which means that the F127@CNs-CuS/MnO2-mediated PTT/PDT synergy anticancer treatment was more effective than single mode therapy. In summary, the innovative multifunctional nanoplatform F127@CNs-CuS/MnO2 used for synergistic PTT and PDT treatment has greatly improved the inactivation efficiency of cancer cells and has provided a new scheme for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Mucang Xiao
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Qilin Pan
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| | - Jianwen Xiong
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
24
|
Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021; 11:127. [PMID: 34905138 PMCID: PMC8671576 DOI: 10.1186/s13550-021-00868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Primorsky Krai, 690091, Vladivostok, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str, Saint Petersburg, Russian Federation, 197341
| | - Susanne Kaesler
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno-Oncology Group, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Einstein Str. 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology, Klinikum rechts der Isar, School of Medicine, Technical University Munich (TUM), Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
25
|
Yang Y, Zhang Z, Chen Q, You Y, Li X, Chen T. Functionalized Selenium Nanoparticles Synergizes With Metformin to Treat Breast Cancer Cells Through Regulation of Selenoproteins. Front Bioeng Biotechnol 2021; 9:758482. [PMID: 34708029 PMCID: PMC8543061 DOI: 10.3389/fbioe.2021.758482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Owing to high blood sugar level and chronic inflammation, diabetes tend to cause the overproduction of free radicals in body, which will damage tissue and cells, reduce autoimmunity, and greatly increase the incidence of tumors. Selenium nanoparticles (SeNPs) exhibit high antioxidant activity with anti-tumor ability. In addition, metformin is considered as a clinical drug commonly for the treatment of stage II diabetes. Therefore, in this study, different functionalized SeNPs combined with metformin were performed to detect the feasibility for cancer therapy. The combination of Tween 80 (TW80)-SeNPs and metformin was found to have a synergistic effect on MCF-7 cells. The mechanism of this synergistic effect involved in the induction of DNA damage by affecting the generation of reactive oxygen species through selenoproteins; the upregulation of DNA-damage-related proteins including p-ATM, p-ATR, and p38; the promotion of p21 expression; and the downregulation of cyclin-dependent kinases and cyclin-related proteins causing cell cycle arrest. Furthermore, the expression of AMPK was affected, which in turn to regulate the mitochondrial membrane potential to achieve the synergistic treatment effect.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Li
- Department of Chemistry, and Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, and Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Nirosha Yalamandala B, Shen W, Min S, Chiang W, Chang S, Hu S. Advances in Functional Metal‐Organic Frameworks Based On‐Demand Drug Delivery Systems for Tumor Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Sheng‐Hao Min
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wen‐Hsuan Chiang
- Department of Chemical Engineering National Chung Hsing University Taichung 402 Taiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and Gynecology Hsinchu MacKay Memorial Hospital Hsinchu 300 Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| |
Collapse
|
27
|
Ding X, Jiang W, Dong L, Hong C, Luo Z, Hu Y, Cai K. Redox-responsive magnetic nanovectors self-assembled from amphiphilic polymer and iron oxide nanoparticles for a remotely targeted delivery of paclitaxel. J Mater Chem B 2021; 9:6037-6043. [PMID: 34259307 DOI: 10.1039/d1tb00991e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To reduce the side effect of paclitaxel and enhance accumulation at the tumor site, a novel redox-responsive nanovector with excellent biocompatibility based on disulfide-linked amphiphilic polymer and magnetic nanoparticle was prepared. The system would realize PTX release due to breakage of the disulfide bond when being targeted to the tumor site by the external magnetic field. The nanovector significantly improved endocytosis and enhanced accumulation at the tumor site, with an effective inhibition of tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xingwei Ding
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China. and The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Wenyan Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Lina Dong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Can Hong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|