1
|
Carabadjac I, Vormittag LC, Muszer T, Wuth J, Ulbrich MH, Heerklotz H. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites. Mol Pharm 2024; 21:2198-2211. [PMID: 38625037 DOI: 10.1021/acs.molpharmaceut.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.
Collapse
Affiliation(s)
- Iulia Carabadjac
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Leonie C Vormittag
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Thomas Muszer
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Jakob Wuth
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5s 3M2, Ontario, Canada
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
2
|
Chatterjee A, Joy A, Purkayastha P. Microviscosity-Assisted Disaggregation of a Model Ophthalmic Drug and FRET-Controlled Singlet Oxygen Generation in Lyotropic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4321-4332. [PMID: 38364370 DOI: 10.1021/acs.langmuir.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Different phases of lyotropic liquid crystals (LLCs), made up of mesogen-like sodium dodecyl sulfate (SDS), mainly bestow different bulk viscosities. Along with this, the role of microviscosities of the individual LLC phases is of immense interest because a minute change in it due to guest incorporation can cause significant alteration in their property as a potential energy transfer scaffold. Recently, LLCs have been identified as plausible drug delivery agents for ocular treatments. In this direction, the present work illustrates photophysical modulations of an important laser dye as well as an ophthalmic medicine, coumarin 6 (C6), inside different LLC phases in an aqueous medium. C6 molecules spontaneously accumulate in water, leading to aggregation-caused quenching (ACQ) of fluorescence. However, the different phases of the LLCs prepared from SDS and water helped in disintegrating the C6 colonies to various extents depending upon the microviscosity. The heterogeneity in the LLC phases, in turn, could modulate the Förster resonance energy transfer (FRET) between C6 and the LLC incorporated with N-doped carbon nanoparticles (N-CNPs). The N-CNPs act as potential photosensitizers and generate singlet oxygen (1O2), a reactive oxygen species (ROS), to different extents. Microviscosities of the prepared LLCs were calculated by using fluorescence correlation spectroscopy (FCS). The different phases of the LLCs, viz., lamellar and hexagonal, with different microviscosities controlled the extent of C6 disaggregation and hence the FRET and the ROS generation. The results are encouraging since ROS generation has a significant role in the vision mechanism and PDT-based applications. LLC-based drug administration with potential FRET to control ROS generation may become handy in ophthalmology. The LLC phases used in this experiment not only served the purpose of drug delivery but also the photophysical events therein are compatible with the ocular environment.
Collapse
Affiliation(s)
- Arunavo Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Athira Joy
- Department of Chemistry, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Khalid MA, Mubeen M, Mukhtar M, Siddique Z, Sumreen P, Aydın F, Asil D, Iqbal A. Probing the Förster Resonance Energy Transfer Dynamics in Colloidal Donor-Acceptor Quantum Dots Assemblies. J Fluoresc 2023; 33:2523-2529. [PMID: 37314535 DOI: 10.1007/s10895-023-03301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
In this article, we report the synthesis of graphene quantum dots (GQDs) by hydrothermal method and surface modified CdS quantum dots (QDs) via the colloidal method and the fabrication of their dyad. The CdS QDs functionalized by mercaptoacetic acid (MAA) attach to the GQDs via electrostatic interactions. Spectral overlapping between the emission spectrum of GQDs and the absorption spectrum of CdS QDs allows efficient Förster resonance energy transfer (FRET) from GQDs to the CdS QDs in the GQDs-CdS QDs dyads. The magnitude of FRET efficiency (E) and the rate of energy transfer (kE) assessed by the photoluminescence (PL) decay kinetics are ~61.84% and ⁓3.8 × 108 s- 1, respectively. These high values of FRET efficiency and energy transfer rate can be assigned to the existence of strong electrostatic interactions between GQDs and CdS QDs, which arise due to the presence of polar functionalities on the surface of both GQDs and CdS QDs. The understanding of energy transfer in the luminescent donor-acceptor FRET system is of significant importance and the practical implications of such FRET systems could overall improve the efficiency of photovoltaics, sensing, imaging and optoelectronic devices.
Collapse
Affiliation(s)
- Muhammad Adnan Khalid
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Muhammad Mubeen
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Maria Mukhtar
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Zumaira Siddique
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Poshmal Sumreen
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Firdevs Aydın
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Demet Asil
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
4
|
Luikham S, Yanthan S, Bhattacharyya J. Mechanistic investigation into the binding property of Yohimbe towards natural polymeric DNAs. Sci Rep 2023; 13:15487. [PMID: 37726357 PMCID: PMC10509242 DOI: 10.1038/s41598-023-40713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
DNA interactions with multivalent ligand(s) have increasingly become the subject of substantial research. For several small molecules with therapeutic potential, nucleic acids serve as their primary molecular target. Such interaction has been shown to affect transcription or replication, ultimately leading to apoptotic cell death. As a result, researchers are becoming increasingly interested in understanding how small molecules interact with DNA making it possible to develop new, DNA-specific drugs. The bioactive indole alkaloid, Yohimbe (Yohimbine; Yh) has been broadly studied in pharmacological properties while its binding mode to DNA has not been explicated so far. This study adopted molecular modelling and multi-spectroscopic methods to investigate the interaction between Yohimbine and herring testes (HT DNA) in physiological conditions. Minor hypochromic and bathochromic shifts of fluorescence intensity were observed, suggesting the binding of Yh to HT DNA. The Scatchard plot analyses using the McGhee-von Hipple method revealed non-cooperative binding and affinities in the range of 105 M-1. The thermodynamic parameters suggested exothermic binding, which was favoured by negative enthalpy and positive entropy changes from temperature-dependent fluorescence experiments. Salt-dependent fluorescence suggested that the interaction between the ligand and DNA was governed by non-polyelectrolytic forces. The results of iodide quenching, urea denaturation assay, dye displacement, and in silico molecular docking, suggested groove binding of Yh to HT DNA. Thus, the groove binding mechanism of interaction was validated by both biophysical and computational techniques. The structural elucidation and energetic profiling of Yh's interaction with naturally occurring polymeric DNA can be useful to the development of DNA-targeted therapeutics.
Collapse
Affiliation(s)
- Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India
| | - Senchumbeni Yanthan
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, 797103, India.
| |
Collapse
|
5
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
6
|
Bastos MK, Pijeira MSO, de Souza Sobrinho JH, Dos Santos Matos AP, Ricci-Junior E, de Almeida Fechine PB, Alencar LMR, Gemini-Piperni S, Alexis F, Attia MF, Santos-Oliveira R. Radiopharmacokinetics of Graphene Quantum Dots Nanoparticles In vivo: Comparing the Pharmacokinetics Parameters in Long and Short Periods. Curr Top Med Chem 2022; 22:2527-2533. [PMID: 35549877 DOI: 10.2174/1568026622666220512150625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Nanoparticles (NPs) have gained great importance during the last decades for developing new therapeutics with improved outcomes for biomedical applications due to their nanoscale size, surface properties, loading capacity, controlled drug release, and distribution. Among the carbon-based nanomaterials, one of the most biocompatible forms of graphene is graphene quantum dots (GQDs). GQDs are obtained by converting 2D graphene into zero-dimensional graphene nanosheets. Moreover, very few reports in the literature reported the pharmacokinetic studies proving the safety and effectiveness of GQDs for in vivo applications. OBJECTIVES This study evaluated the pharmacokinetics of GQDs radiolabeled with 99mTc, administered intravenously, in rodents (Wistar rats) in two conditions: short and long periods, to compare and understand the biological behavior. METHODS The graphene quantum dots were produced and characterized by RX diffractometry, Raman spectroscopy, and atomic force microscopy. The pharmacokinetic analysis was performed following the radiopharmacokinetics concepts, using radiolabeled graphene quantum dots with technetium 99 metastable (99mTc). The radiolabeling process of the graphene quantum dots with 99mTc was performed by the direct via. RESULTS The results indicate that the pharmacokinetic analyses with GQDs over a longer period were more accurate. Following a bicompartmental model, the long-time analysis considers each pharmacokinetic phase of drugs into the body. Furthermore, the data demonstrated that short-time analysis could lead to distortions in pharmacokinetic parameters, leading to misinterpretations. CONCLUSION The evaluation of the pharmacokinetics of GQDs over long periods is more meaningful than the evaluation over short periods.
Collapse
Affiliation(s)
- Matheus Keuper Bastos
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Martha Sahylí Ortega Pijeira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | | | - Ana Paula Dos Santos Matos
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Galenic Development Laboratory (LADEG), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-170, Brazil
| | - Pierre Basilio de Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat)- Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza-CE, 451-970, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Department of Physics, Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Sara Gemini-Piperni
- Institute of Biological Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, 21940000 Brazil
| | - Frank Alexis
- Politécnico, Quito 170910, Ecuador, Universidad San Francisco de Quito USFQ
| | - Mohamed Fathy Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmaco-engineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil.,State University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200 Brazil
| |
Collapse
|
7
|
Chatterjee A, Purkayastha P. Events at the Interface: How Do Interfaces Modulate the Dynamics and Functionalities of Guest Molecules? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12415-12420. [PMID: 36196476 DOI: 10.1021/acs.langmuir.2c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical and biological interfaces are of various types, which could be between two materials of the same and/or different states, two phases of the same material, biological substrates and the outer environment, surfactant or polymeric membranes and the bulk, and so forth. Small-molecule guests frequently interact with such interfaces that decide their functionalities. The structural and behavioral properties undergo considerable characteristic changes, which control their final course of action in the targeted application. This Perspective will discuss mainly the chemical interfaces constituted by the surfactants, polymers, lipids, and nucleic acids and their impacts on the dynamics of small-molecule guests. Some specific and interesting phenomena and future prospects will be elucidated in this Perspective.
Collapse
Affiliation(s)
- Arunavo Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB India
| |
Collapse
|
8
|
Sinha R, Chatterjee A, Purkayastha P. Graphene Quantum Dot Assisted Translocation of Daunomycin through an Ordered Lipid Membrane: A Study by Fluorescence Lifetime Imaging Microscopy and Resonance Energy Transfer. J Phys Chem B 2022; 126:1232-1241. [PMID: 35129981 DOI: 10.1021/acs.jpcb.1c09376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Daunomycin (DN) is a well-known chemotherapy drug frequently used in treating acute myeloid and lymphoblastic leukemia. It needs to be delivered to the therapeutic target by a delivering agent that beats the blood-brain barrier. DN is known to be specifically located at the membrane surface and scantly to the bilayer. Penetration of DN into the membrane bilayer depends on the molecular packing of the lipid. It does not travel promptly to the interior of the cells and needs a carrier to serve the purpose. Here, we have demonstrated, by fluorescence lifetime imaging spectroscopy (FLIM) and resonance energy transfer (RET) phenomenon, that ultrasmall graphene quantum dots (GQDs) can be internalized into the aqueous pool of giant unilamellar vesicles (GUVs) made from dipalmitoylphosphatidylcholine (DPPC) lipids, which, in turn, help in fast translocation of DN through the membrane without any delivery vehicle.
Collapse
Affiliation(s)
- Riya Sinha
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Arunavo Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India
| |
Collapse
|
9
|
Yu C, Long Z, Qiu Q, Liu F, Xu Y, Zhang T, Guo R, Zhong W, Huang S, Chen S. Graphene quantum dots‐based targeted nanoprobes detecting drug delivery, imaging, and enhanced chemotherapy of nasopharyngeal carcinoma. Bioeng Transl Med 2021; 7:e10270. [PMID: 35600653 PMCID: PMC9115680 DOI: 10.1002/btm2.10270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
One of the main clinical treatments for advanced nasopharyngeal carcinoma is chemotherapy, but systemic administration can cause serious adverse reactions. New type of nanomaterial which can actively targeting, imaging, and treating nasopharyngeal carcinoma at the same time to enhance the effect of chemotherapy, meanwhile monitoring the intracellular drug release process at the level of single cancer cell was urgently needed. GE11, an EGFR antagonist peptide, was used to target nasopharyngeal carcinoma which has positive expression of EGFR on its nucleus. GE11‐modified graphene quantum dots (GQDs@GE11) were used as drug carriers for clinical chemotherapeutics cisplatin (CDDP) and doxorubicin (DOX). The emission spectrum of GQDs (460 nm) and the excitation spectrum of DOX (470 nm) have a good overlap, thus the transfer and release process of DOX can be sensitively detected by the fluorescence resonance energy transfer (FRET). CDDP was used to enhance the chemotherapy effect of nanoprobe, and the loading amount of DOX and CDDP on GQDs@GE11 nanoprobe were up to 67 and 50 mg/g, respectively. In vivo experiments have confirmed that GQDs@GE11/CDDP/DOX nanoprobe can be enriched to tumor site through specific targeting effect, and significantly inhibit tumor cell proliferation. This new type of targeted therapy fluorescent probe provides new ideas for the study of drug release process and the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Chaosheng Yu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
- Guangzhou Red Cross Hospital Jinan University Guangzhou China
| | - Zhen Long
- Department of Otorhinolaryngology head and neck Surgery The Sixth Affiliated Hospital of Sun Yat‐Sen University Guangzhou China
| | - Qianhui Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Fang Liu
- Department of Otorhinolaryngology Head and Neck Surgery First Affiliated Hospital of Gannan Medical University Ganzhou China
| | - Yiming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Tao Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering Jinan University Guangzhou China
| | - Wen Zhong
- Department of Otorhinolaryngology‐Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Shuixian Huang
- Gongli Hospital of Shanghai Pudong New Area Shanghai China
| | - Shuaijun Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
10
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
11
|
|
12
|
Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111809. [DOI: 10.1016/j.msec.2020.111809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
|