1
|
Yuan L, Chen B, Zhu K, Ren L, Yuan X. Development of Macromolecular Cryoprotectants for Cryopreservation of Cells. Macromol Rapid Commun 2024; 45:e2400309. [PMID: 39012218 DOI: 10.1002/marc.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Cryopreservation is a common way for long-term storage of therapeutical proteins, erythrocytes, and mammalian cells. For cryoprotection of these biosamples to keep their structural integrity and biological activities, it is essential to incorporate highly efficient cryoprotectants. Currently, permeable small molecular cryoprotectants such as glycerol and dimethyl sulfoxide dominate in cryostorage applications, but they are harmful to cells and human health. As acting in the extracellular space, membrane-impermeable macromolecular cryoprotectants, which exert remarkable membrane stabilization against cryo-injury and are easily removed post-thaw, are promising candidates with biocompatibility and feasibility. Water-soluble hydroxyl-containing polymers such as poly(vinyl alcohol) and polyol-based polymers are potent ice recrystallization inhibitors, while polyampholytes, polyzwitterions, and bio-inspired (glyco)polypeptides can significantly increase post-thaw recovery with reduced membrane damages. In this review, the synthetic macromolecular cryoprotectants are systematically summarized based on their synthesis routes, practical utilities, and cryoprotective mechanisms. It provides a valuable insight in development of highly efficient macromolecular cryoprotectants with valid ice recrystallization inhibition activity for highly efficient and safe cryopreservation of cells.
Collapse
Affiliation(s)
- Liang Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Binlin Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
3
|
Wang E, Liu S, Zhang X, Peng Q, Yu H, Gao L, Xie A, Ma D, Zhao G, Cheng L. An Optimized Human Erythroblast Differentiation System Reveals Cholesterol-Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303471. [PMID: 38481061 PMCID: PMC11165465 DOI: 10.1002/advs.202303471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Indexed: 06/12/2024]
Abstract
The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.
Collapse
Affiliation(s)
- Enyu Wang
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Qingyou Peng
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Huijuan Yu
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Gao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Division of HematologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
4
|
Klbik I. Is post-hypertonic lysis of human red blood cells caused by excessive cell volume regulation? Cryobiology 2024; 114:104795. [PMID: 37984597 DOI: 10.1016/j.cryobiol.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Human red blood cells (RBC) exposed to hypertonic media are subject to post-hypertonic lysis - an injury that only develops during resuspension to an isotonic medium. The nature of post-hypertonic lysis was previously hypothesized to be osmotic when cation leaks were observed, and salt loading was suggested as a cause of the cell swelling upon resuspension in an isotonic medium. However, it was problematic to account for the salt loading since the plasma membrane of human RBCs was considered impermeable to cations. In this study, the hypertonicity-related behavior of human RBCs is revisited within the framework of modern cell physiology, considering current knowledge on membrane ion transport mechanisms - an account still missing. It is recognized here that the hypertonic behavior of human RBCs is consistent with the acute regulatory volume increase (RVI) response - a healthy physiological reaction initiated by cells to regulate their volume by salt accumulation. It is shown by reviewing the published studies that human RBCs can increase cation conductance considerably by activating cell volume-regulated ion transport pathways inactive under normal isotonic conditions and thus facilitate salt loading. A simplified physiological model accounting for transmembrane ion fluxes and membrane voltage predicts the isotonic cell swelling associated with increased cation conductance, eventually reaching hemolytic volume. The proposed involvement of cell volume regulation mechanisms shows the potential to explain the complex nature of the osmotic response of human RBCs and other cells. Cryobiological implications, including mechanisms of cryoprotection, are discussed.
Collapse
Affiliation(s)
- Ivan Klbik
- Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic; Department of Experimental Physics, FMFI UK, Mlynská dolina F1, 842 48, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Hu Y, Liu X, Zhang W, Chen J, Chen X, Tan S. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization. ACS Biomater Sci Eng 2024; 10:851-862. [PMID: 38176101 DOI: 10.1021/acsbiomaterials.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
6
|
Qin X, Chen Z, Shen L, Liu H, Ouyang X, Zhao G. Core-Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit. NANO-MICRO LETTERS 2023; 16:3. [PMID: 37930493 PMCID: PMC10628128 DOI: 10.1007/s40820-023-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cryopreservation of red blood cells (RBCs) provides great potential benefits for providing transfusion timely in emergencies. High concentrations of glycerol (20% or 40%) are used for RBC cryopreservation in current clinical practice, which results in cytotoxicity and osmotic injuries that must be carefully controlled. However, existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels, which require relatively large storage space and an extra concentration process before transfusion, making it inconvenient (time-consuming, and also may cause injury and sample lose) for clinical applications. To this end, we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core-shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation. Different from previous studies, we achieve the cryopreservation of human RBCs at high hematocrit (> 40%) with high recovery (up to 95%). Additionally, the washed RBCs post-cryopreserved are proved to maintain their morphology, mechanics, and functional properties. This may provide a nontoxic, high-efficiency, and glycerol-free approach for RBC cryopreservation, along with potential clinical transfusion benefits.
Collapse
Affiliation(s)
- Xianhui Qin
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Huilan Liu
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100089, People's Republic of China.
| | - Gang Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| |
Collapse
|
7
|
Wang X, Wang E, Zhao G. Advanced cryopreservation engineering strategies: the critical step to utilize stem cell products. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:28. [PMID: 37528321 PMCID: PMC10393932 DOI: 10.1186/s13619-023-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
With the rapid development of stem cell-related therapies and regenerative medicine, the clinical application of stem cell products is on the rise. However, ensuring the effectiveness of these products after storage and transportation remains a challenge in the transformation to clinical trials. Cryopreservation technology allows for the long-term storage of cells while ensuring viability, making it a top priority for stem cell preservation. The field of cryopreservation-related engineering technologies is thriving, and this review provides an overview of the background and basic principles of cryopreservation. It then delves into the main bioengineering technologies and strategies used in cryopreservation, including photothermal and electromagnetic rewarming, microencapsulation, and synergetic ice inhibition. Finally, the current challenges and future prospects in the field of efficient cryopreservation of stem cells are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Enyu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
8
|
Klbik I, Čechová K, Milovská S, Švajdlenková H, Maťko I, Lakota J, Šauša O. Polyethylene glycol 400 enables plunge-freezing cryopreservation of human keratinocytes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Chen J, Liu X, Hu Y, Chen X, Tan S. Cryopreservation of tissues and organs: present, bottlenecks, and future. Front Vet Sci 2023; 10:1201794. [PMID: 37303729 PMCID: PMC10248239 DOI: 10.3389/fvets.2023.1201794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Tissue and organ transplantation continues to be an effective measure for saving the lives of certain critically ill patients. The organ preservation methods that are commonly utilized in clinical practice are presently only capable of achieving short-term storage, which is insufficient for meeting the demand for organ transplantation. Ultra-low temperature storage techniques have garnered significant attention due to their capacity for achieving long-term, high-quality preservation of tissues and organs. However, the experience of cryopreserving cells cannot be readily extrapolated to the cryopreservation of complex tissues and organs, and the latter still confronts numerous challenges in its clinical application. This article summarizes the current research progress in the cryogenic preservation of tissues and organs, discusses the limitations of existing studies and the main obstacles facing the cryopreservation of complex tissues and organs, and finally introduces potential directions for future research efforts.
Collapse
|
10
|
Hu Y, Liu X, Liu F, Xie J, Zhu Q, Tan S. Trehalose in Biomedical Cryopreservation-Properties, Mechanisms, Delivery Methods, Applications, Benefits, and Problems. ACS Biomater Sci Eng 2023; 9:1190-1204. [PMID: 36779397 DOI: 10.1021/acsbiomaterials.2c01225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cells and tissues are the foundation of translational medicine. At present, one of the main technological obstacles is their preservation for long-term usage while maintaining adequate viability and function. Optimized storage techniques must be developed to make them safer to use in the clinic. Cryopreservation is the most common long-term preservation method to maintain the vitality and function of cells and tissues. But, the formation of ice crystals in cells and tissues is considered to be the main mechanism that could harm cells and tissues during freezing and thawing. To reduce the formation of ice crystals, cryoprotective agents (CPAs) must be added to the cells and tissues to achieve the cryoprotective effect. However, conventional cryopreservation of cells and tissues often needs to use toxic organic solvents as CPAs. As a result, cryopreserved cells and tissues may need to go through a time-consuming washing process to remove CPAs for further applications in translational medicine, and multiple valuable cells are potentially lost or killed. Currently, trehalose has been researched as a nontoxic CPA due to its cryoprotective ability and stability during cryopreservation. Nevertheless, trehalose is a nonpermeable CPA, and the lack of an effective intracellular trehalose delivery method has become the main obstacle to its use in cryopreservation. This article illustrated the properties, mechanisms, delivery methods, and applications of trehalose, summarized the benefits and limits of trehalose, and summed up the findings and research direction of trehalose in biomedical cryopreservation.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
11
|
Gao S, Niu Q, Wang Y, Ren L, Chong J, Zhu K, Yuan X. A Dynamic Membrane-Active Glycopeptide for Enhanced Protection of Human Red Blood Cells against Freeze-Stress. Adv Healthc Mater 2022; 12:e2202516. [PMID: 36548128 DOI: 10.1002/adhm.202202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Intracellular delivery of freezing-tolerant trehalose is crucial for cryopreservation of red blood cells (RBCs) and previous strategies based on membrane-disruptive activity usually generate severe hemolysis. Herein, a dynamic membrane-active glycopeptide is developed by grafting with 25% maltotriose and 50% p-benzyl alcohol for the first time to effectively facilitate entry of membrane-impermeable trehalose in human RBCs with low hemolysis. Results of the mechanism acting on cell membranes suggest that reversible adsorption of such benzyl alcohol-grafted glycopeptide on cell surfaces upon weak perturbation with phospholipids and dynamic transition toward membrane stabilization are essential for keeping cellular biofunctions. Furthermore, the functionalized glycopeptide is indicative of typical α-helical/β-sheet structure-driven regulations of ice crystals during freeze-thaw, thereby strongly promoting efficient cryopreservation. Such all-in-one glycopeptide enables achieving both high cell recovery post-thaw >85% and exceptional cryosurvival >95% in direct freezing protocols. The rationally designed benzyl alcohol-modified glycopeptide permits the development of a competent platform with high generality for protection of blood cells against freeze-stress.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | | | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
12
|
Tricine as a Novel Cryoprotectant with Osmotic Regulation, Ice Recrystallization Inhibition and Antioxidant Properties for Cryopreservation of Red Blood Cells. Int J Mol Sci 2022; 23:ijms23158462. [PMID: 35955596 PMCID: PMC9369174 DOI: 10.3390/ijms23158462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) plays a key role in blood transfusion therapy. Traditional cryoprotectants (CPAs) are mostly organic solvents and may cause side effects to RBCs, such as hemolysis and membrane damage. Therefore, it is necessary to find CPAs with a better performance and lower toxicity. Herein, we report for the first time that N-[Tri(hydroxymethyl)methyl]glycine (tricine) showed a great potential in the cryopreservation of sheep RBCs. The addition of tricine significantly increased the thawed RBCs’ recovery from 19.5 ± 1.8% to 81.2 ± 8.5%. The properties of thawed RBCs were also maintained normally. Through mathematical modeling analysis, tricine showed a great efficiency in cryopreservation. We found that tricine had a good osmotic regulation capacity, which could mitigate the dehydration of RBCs during cryopreservation. In addition, tricine inhibited ice recrystallization, thereby decreasing the mechanical damage from ice. Tricine could also reduce oxidative damage during freezing and thawing by scavenging reactive oxygen species (ROS) and maintaining the activities of endogenous antioxidant enzymes. This work is expected to open up a new path for the study of novel CPAs and promote the development of cryopreservation of RBCs.
Collapse
|
13
|
Ng JY, Tan KYF, Ee PLR. Sugar-Assisted Cryopreservation of Stem Cell-Laden Gellan Gum-Collagen Interpenetrating Network Hydrogels. Biomacromolecules 2022; 23:2803-2813. [PMID: 35675906 PMCID: PMC9277585 DOI: 10.1021/acs.biomac.2c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue engineering involves the transplantation of stem cell-laden hydrogels as synthetic constructs to replace damaged tissues. However, their time-consuming fabrication procedures are hurdles to widespread application in clinics. Fortunately, similar to cell banking, synthetic tissues could be cryopreserved for subsequent central distribution. Here, we report the use of trehalose and gellan gum as biomacromolecules to form a cryopreservable yet directly implantable hydrogel system for adipose-derived stem cell (ADSC) delivery. Through a modified cell encapsulation method and a preincubation step, adequate cryoprotection was afforded at 0.75 M trehalose to the encapsulated ADSCs. At this concentration, trehalose demonstrated lower propensity to induce apoptosis than 10% DMSO, the current gold standard cryoprotectant. Moreover, when cultured along with trehalose after thawing, the encapsulated ADSCs retained their stem cell-like phenotype and osteogenic differentiation capacity. Taken together, this study demonstrates the feasibility of an "off-the-shelf" biomacromolecule-based synthetic tissue to be applied in widespread tissue engineering applications.
Collapse
Affiliation(s)
- Jian Yao Ng
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Kee Ying Fremi Tan
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Pui Lai Rachel Ee
- Department
of Pharmacy, Faculty of Science, National
University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
- NUS
Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
14
|
Hu Q, Wang Z, Shen L, Zhao G. Label-Free and Noninvasive Single-Cell Characterization for the Viscoelastic Properties of Cryopreserved Human Red Blood Cells Using a Dielectrophoresis-On-a-Chip Approach. Anal Chem 2022; 94:10245-10255. [DOI: 10.1021/acs.analchem.2c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qianqian Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Bryant SJ, Awad MN, Elbourne A, Christofferson AJ, Martin AV, Meftahi N, Drummond CJ, Greaves TL, Bryant G. Deep eutectic solvents as cryoprotective agents for mammalian cells. J Mater Chem B 2022; 10:4546-4560. [PMID: 35670530 DOI: 10.1039/d2tb00573e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Andrew J Christofferson
- School of Science, College of STEM, RMIT University, Melbourne, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
16
|
Zhu C, Niu Q, Yuan X, Chong J, Ren L. NonFreezable Preservation of Human Red Blood Cells at -8 °C. ACS Biomater Sci Eng 2022; 8:2644-2653. [PMID: 35536888 DOI: 10.1021/acsbiomaterials.2c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Red blood cell (RBC) preservation is very important in human health. The RBCs are usually preserved at 4 ± 2 °C without freezing or at a very low temperature (-80 °C or liquid nitrogen) with deep freezing. Herein, non freezable preservation of RBCs at a subzero temperature is reported to prolong the preservation time compared with that at 4 ± 2 °C. By adding glycerol and poly(ethylene glycol) (PEG) (average number molecular weight 400, PEG-400) into the preservation solution, the freezing point is decreased and the hemolysis is kept low. The cell metabolism of stored RBCs at -8 °C is reduced, and the shelf life of RBCs extends up to at least 70 days. At the end of preservation, the pH decreases a little bit to demonstrate the low metabolic rate of RBCs stored at subzero temperatures. After quick washing, the RBC survival rate is ca. 95%. The adenosine triphosphate, 2,3-diphosphoglycerate, and cell deformation ability of the washed RBCs are maintained at a high level, while the malondialdehyde is relatively low, which verifies the high quality of RBCs stored at this condition.
Collapse
Affiliation(s)
- Chenhui Zhu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Yao J, Shen L, Chen Z, Zhang B, Zhao G. Hydrogel Microencapsulation Enhances Cryopreservation of Red Blood Cells with Trehalose. ACS Biomater Sci Eng 2022; 8:2066-2075. [PMID: 35394755 DOI: 10.1021/acsbiomaterials.2c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cryopreservation of red blood cells (RBCs) plays a vital role in preserving rare blood and serologic testing, which is essential for clinical transfusion medicine. The main difficulties of the current cryopreservation technique are the high glycerol concentration and the tedious deglycerolization procedure after thawing. In this study, we explored a microencapsulation method for cryopreservation. RBC-hydrogel microcapsules with a diameter of approximately 2.184 ± 0.061 mm were generated by an electrostatic spraying device. Then, 0.7 M trehalose was used as a cryoprotective agent (CPA), and microcapsules were adhered to a stainless steel grid for liquid nitrogen freezing. The results show that compared with the RBCs frozen by cryovials, the recovery of RBCs after microencapsulation is significantly improved, up to a maximum of more than 85%. Additionally, the washing process can be completed using only 0.9% NaCl. After washing, the RBCs maintained their morphology and adenosine 5'-triphosphate (ATP) levels and met clinical transfusion standards. The microencapsulation method provides a promising, referenceable, and more practical strategy for future clinical transfusion medicine.
Collapse
Affiliation(s)
- Jianbo Yao
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zhongrong Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| | - Bing Zhang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Exploring the application and mechanism of sodium hyaluronate in cryopreservation of red blood cells. Mater Today Bio 2021; 12:100156. [PMID: 34825160 PMCID: PMC8603211 DOI: 10.1016/j.mtbio.2021.100156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) is essential for transfusion therapy and maintaining the inventory of RBCs units. The existing cryoprotectants (CPAs) have many defects, and the search for novel CPAs is becoming a research hotspot. Sodium hyaluronate (SH) is polymerized from sodium glucuronate and N-acetylglucosamine, which has good water binding capacity and biocompatibility. Herein, we reported for the first time that under the action of medium molecular weight sodium hyaluronate (MSH), the thawed RBCs recovery increased from 33.1 ± 5.8% to 63.2 ± 3.5%. In addition, RBCs functions and properties were maintained normally, and the residual MSH could be removed by direct washing. When MSH was used with a very low concentration (5% v/v) of glycerol (Gly), the thawed RBCs recovery could be increased to 92.3 ± 4.6%. In general, 40% v/v Gly was required to achieve similar efficiency. A mathematical model was used to compare the performance of MSH, PVA and trehalose in cryopreservation, and MSH showed the best efficiency. It was found that MSH could periodically regulate the content of intracellular water through the “reservoir effect” to reduce the damages during freezing and thawing. Moreover, MSH could inhibit ice recrystallization when combined with RBCs. The high viscosity and strong water binding capacity of MSH was also conducive to reducing the content of ice. This works points out a new direction for cryopreservation of RBCs and may promote transfusion therapy in clinic. MSH improved the RBCs recovery in cryopreservation. MSH can be removed directly after thawing. The properties and functions of RBCs were protected by MSH. High RBCs recovery is found using MSH with 5% v/v glycerol. The mathematical model is studied for the cryopreservation. The mechanism is proposed for cryopreservation using MSH.
Collapse
|
19
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
20
|
Sun Y, Liu J, Li Z, Wang J, Huang Y. Nonionic and Water-Soluble Poly(d/l-serine) as a Promising Biomedical Polymer for Cryopreservation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18454-18461. [PMID: 33856763 DOI: 10.1021/acsami.0c22308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-soluble, biodegradable, nonionic, and biocompatible polymers with multiple functional groups are highly desired for biomedical applications. Here, we report that water-soluble nonionic poly(d/l-serine) is chirality-controllable, biodegradation-controllable, and non-cytotoxic. Hence, it can be a highly sought-after alternative to the widely used poly(ethylene glycol), with an additional advantage of having multiple hydroxyl groups for further functionalization. As one example of its biomedical applications, poly(d/l-serine) demonstrated an obvious cryoprotective effect on the red blood cells. The usage of poly(d/l-serine) in the cryopreservation field would be of great promise to resolve the difficulties in separating cryoprotectants due to toxicity.
Collapse
Affiliation(s)
- Yuling Sun
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Jie Liu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianjun Wang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|