1
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
2
|
Zhao J, Ying Y, Zeng H, Zhao K, Li G, Li W. Nanoscale Thermal Strain Engineering-Driven Ferroelastic Domain Evolution in CH 3NH 3PbI 3 Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12502-12510. [PMID: 36848597 DOI: 10.1021/acsami.2c19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A local thermal strain engineering approach via an ac-heated thermal probe was incorporated into methylammonium lead triiodide (MAPbI3) crystals and acts as a driving force for ferroic twin domain dynamics, local ion migration, and property tailoring. Periodically, striped ferroic twin domains and their dynamic evolutions were successfully induced by local thermal strain and high-resolution thermal imaging, giving decisive evidence of the ferroelastic nature in MAPbI3 perovskites at room temperature. Local thermal ionic imaging and chemical mappings demonstrate that domain contrasts are from local methylammonium (MA+) redistribution into the stripes of chemical segregation in response to the local thermal strain fields. The present results reveal an inherent coupling among local thermal strains, ferroelastic twin domains, local chemical-ion segregations, and physical properties and offer a potential path to improve the functionality of metal halide perovskite-based solar cells.
Collapse
Affiliation(s)
- Jiaqi Zhao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Ying
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Zeng
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunyu Zhao
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorong Li
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. METALS 2021. [DOI: 10.3390/met11030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid progress in material science and nanotechnology has led to the development of the shape memory alloys (SMA) and the shape memory polymers (SMP) based functional multilayered structures that, due to their capability to achieve the properties not feasible by most natural materials, have attracted a significant attention from the scientific community. These shape memory materials can sustain large deformations, which can be recovered once the appropriate value of an external stimulus is applied. Moreover, the SMAs and SMPs can be reprogrammed to meet several desired functional properties. As a result, SMAs and SMPs multilayered structures benefit from the unprecedented physical and material properties such as the shape memory effect, superelasticity, large displacement actuation, changeable mechanical properties, and the high energy density. They hold promises in the design of advanced functional micro- and nano-electro-mechanical systems (MEMS/NEMS). In this review, we discuss the recent understanding and progress in the fields of the SMAs and SMPs. Particular attention will be given to the existing challenges, critical issues, limitations, and achievements in the preparation and characterization of the SMPs and NiTi-based SMAs thin films, and their heterostructures for MEMS/NEMS applications including both experimental and computational approaches. Examples of the recent MEMS/NEMS devices utilizing the unique properties of SMAs and SMPs such as micropumps, microsensors or tunable metamaterial resonators are highlighted. In addition, we also introduce the prospective future research directions in the fields of SMAs and SMPs for the nanotechnology applications.
Collapse
|