1
|
Niu X, Yang H, Wu X, Huo F, Ma K, Yin C. A thiol-triggered croconaine-chromene integration to induce ferroptosis and photothermal synergistic efficient tumor ablation. Chem Sci 2024:d4sc03688c. [PMID: 39246356 PMCID: PMC11376015 DOI: 10.1039/d4sc03688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Theranostic probes, combining diagnostic and treatment capabilities, have emerged as promising tools in tumor precision medicine. However, existing probes with constant fluorescence and photothermal activity can result in low signal-to-background ratios and phototoxicity. In this study, we introduced CM-Croc, a novel probe comprised of chromene and croconaine, selectively triggered by thiol. CM-Croc exhibited turn-on fluorescence and released croconaine for photothermal therapy. The croconaine moiety possesses high photothermal conversion efficiency up to 55%. Besides, it demonstrated potent activity against various cancer cell lines at low micromolar concentrations, including drug-resistant variants, through enhanced photothermal therapy combined with the ferroptosis effect. What's more, CM-Croc was proved to inhibit the activity of GPX4 to induce ferroptosis. Finally, CM-Croc was demonstrated to be the first croconaine-derived SOP, which targeted tumors and significantly inhibited tumor growth in vivo following intravenous administration with irradiation. This study showed CM-Croc's potential for enhancing tumor precision medicine.
Collapse
Affiliation(s)
- Xinya Niu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan 030006 China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
- Zhendong Research Institute, Shanxi-Zhendong Pharmaceutical Co., Ltd Changzhi 047100 China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
2
|
Ferraboschi I, Ovčar J, Vygranenko KV, Yu S, Minervino A, Wrzosek A, Szewczyk A, Rozza R, Magistrato A, Belfield KD, Gryko DT, Grisanti L, Sissa C. Neutral rhodol-based dyes expressing localization in mitochondria. Org Biomol Chem 2024; 22:5886-5890. [PMID: 38804835 DOI: 10.1039/d4ob00252k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neutral rhodol-based red emitters are shown to efficiently localize in mitochondria, as demonstrated by confocal microscopy and co-localization studies. A simple model is proposed to explain the localization mechanism of neutral molecules. The model takes into account the strong coupling between the molecular dipole moment and the electric field of the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Juraj Ovčar
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Kateryna V Vygranenko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Alfonso Minervino
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Antoni Wrzosek
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Riccardo Rozza
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Luca Grisanti
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
3
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
4
|
Hao HC, Zhang G, Sun R, Xu YJ, Ge JF. Multiple organelle-targeted 1,8-naphthyridine derivatives for detecting the polarity of organelles. J Mater Chem B 2023. [PMID: 37401500 DOI: 10.1039/d3tb00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Four 1,8-naphthyridine derivatives (1a-1d) with different organelle targeting abilities were obtained using the Knoevenagel condensation reaction of 1,8-naphthyridine with 4-(N,N-diethylamino)benzaldehyde (2a), 4-(N,N-diphenylamino)benzaldehyde (2b), 4-(piperazin-1-yl)benzaldehyde (2c) and 4-(ethyl(4-formylphenyl)amino)-N-(2-((4-methylphenyl)sulfonamido)ethyl)butanamide (2d), respectively. The maximal absorption bands of dyes 1a-1d were observed at 375-447 nm, while their maximum emission peaks were situated at 495-605 nm. The optical properties showed that the fluorescence emission of dyes 1a-1d is shifted toward greater wavelengths as the system polarity (Δf) increased. Meanwhile, with increasing polarity of the mixed 1,4-dioxane/H2O system, the fluorescence intensity of dyes 1a-1d gradually decreased. Furthermore, the fluorescence intensity of 1a-1d enhanced by 12-239 fold as the polarity of 1,4-dioxane/H2O mixtures declined. 1a-1d had a large Stokes shift (up to 229 nm) in polar solvents in comparison to nonpolar solvents. The colocalization imaging experiments demonstrated that dyes 1a-1d (3-10 μM) were located in mitochondria, lipid droplets, lysosomes and the endoplasmic reticulum in living HeLa cells, respectively; and they could monitor the polarity fluctuation of the corresponding organelles. Consequently, this work proposes a molecular design idea with different organelle targeting capabilities based on the same new fluorophore, and this molecular design idea may provide more alternatives for polarity-sensitive fluorescent probes with organelle targeting.
Collapse
Affiliation(s)
- Hao-Chi Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| |
Collapse
|
5
|
Organelle-Targeted Fluorescent Probes for Sulfane Sulfur Species. Antioxidants (Basel) 2023; 12:antiox12030590. [PMID: 36978838 PMCID: PMC10045342 DOI: 10.3390/antiox12030590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H2Sn, n > 1), and polysulfides (RSnR, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H2S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged. This has driven a need for organelle-targeted detection methods. However, the detection of sulfane sulfurs, particularly of RSSH and H2Sn, in biological systems is still a challenge due to their low endogenous concentrations and instabilities. In this review, we summarize the development and design of organelle-targeted fluorescent sulfane sulfur probes, examine their organelle-targeting strategies and choices of fluorophores (e.g., ratiometric, near-infrared, etc.), and discuss their mechanisms and ability to detect endogenous and exogenous sulfane sulfur species. We also present the advantages and limitations of the probes and propose directions for future work on this topic.
Collapse
|
6
|
Patra SA, Sahu G, Pattanayak PD, Sasamori T, Dinda R. Mitochondria-Targeted Luminescent Organotin(IV) Complexes: Synthesis, Photophysical Characterization, and Live Cell Imaging. Inorg Chem 2022; 61:16914-16928. [PMID: 36239464 DOI: 10.1021/acs.inorgchem.2c02959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Five fluorescent ONO donor-based organotin(IV) complexes, [SnIV(L1-5)Ph2] (1-5), were synthesized by the one-pot reaction method and fully characterized spectroscopically including the single-crystal X-ray diffraction studies of 2-4. Detailed photophysical characterization of all compounds was performed. All the compounds exhibited high luminescent properties with a quantum yield of 17-53%. Additionally, the results of cellular permeability analysis suggest that they are lipophilic and easily absorbed by cells. Confocal microscopy was used to examine the live cell imaging capability of 1-5, and the results show that the compounds are mostly internalized in mitochondria and exhibit negligible cytotoxicity at imaging concentration. Also, 1-5 exhibited high photostability as compared to the commercial dye and can be used in long-term real-time tracking of cell organelles. Also, it is found that the probes (1-5) are highly tolerable during the changes in mitochondrial morphology. Thus, this kind of low-toxic organotin-based fluorescent probe can assist in imaging of mitochondria within living cells and tracking changes in their morphology.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | | | - Takahiro Sasamori
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
7
|
Peng HY, Zhang G, Xu YJ, Sun R, Ge JF. Near-infrared fluorescent probes based on a quinoxaline skeleton for imaging nucleic acids in mitochondria. Org Biomol Chem 2022; 20:5558-5565. [PMID: 35791887 DOI: 10.1039/d2ob01095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, two cationic probes 1a and 1b and a neutral dye 1c were successfully designed and synthesized according to the Knoevenagel condensation reaction, which combines the good optical properties of hemocyanine and the biocompatibility of nitrogen-containing heterocyclic rings based on a quinoxaline skeleton. Probes 1a and 1b showed an OFF-ON fluorescence response to nucleic acids with excellent selectivity. Specifically, the fluorescence intensity of probe 1a was enhanced by 18 and 133 times, respectively, along with the increase of DNA or RNA concentrations (0-600 μg mL-1). Furthermore, a good linear correlation between the fluorescence intensity of probes 1a and 1b and the concentrations of DNA or RNA (0-350 μg mL-1) was obtained. In particular, the maximum emission wavelengths of probes 1a and 1b reached the near-infrared region (660-664 nm) when DNA or RNA was detected, which might reduce the light damage to cells and facilitate cell experiments. Fluorescence imaging revealed that all three dyes could be localized in the mitochondria of HeLa cells. The difference was that probes 1a and 1b could stain the nucleic acid in the mitochondria, while dye 1c was only a neutral mitochondrial biomarker. The results indicated that probes 1a and 1b are promising in the development of low toxicity mitochondrial nucleic acid probes and are expected to be used in monitoring the normal state of mitochondrial nucleic acids for living cells, which will help improve the situation in that currently reported studies of fluorescent probes are mainly focused on the nucleic acids in the nucleus, but less so on DNA in the mitochondria.
Collapse
Affiliation(s)
- Hai-Yan Peng
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| |
Collapse
|
8
|
Wang L, Zheng H, Zheng K, Yan J, Zhang N, Yu W. π-Expanded benzothiazole dyes with excited-state intramolecular proton-transfer process: Synthesis, photophysical properties, imaging in cells and zebrafish. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Nguyen VN, Heo S, Koh CW, Ha J, Kim G, Park S, Yoon J. A Simple Route toward Next-Generation Thiobase-Based Photosensitizers for Cancer Theranostics. ACS Sens 2021; 6:3462-3467. [PMID: 34432415 DOI: 10.1021/acssensors.1c01391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur-substituted biocompatible carbonyl fluorophores have been recognized as effective heavy-atom-free photosensitizers (PSs) for cancer therapy due to their remarkable phototherapeutic properties. However, guidelines on their molecular design are still a substantial challenge. Most of the existing thiocarbonyl-based PSs are nonemissive in both the solution and restricted states, which hinders their further biomedical applications. Herein, we report the interesting finding that sulfur-substituted coumarins exhibit an uncommon phenomenon, aggregation-induced emission. More intriguingly, we also found that the introduction of a strong electron-accepting trifluoromethyl group is crucial to facilitate the mitochondrial-targeting ability of neutral coumarin fluorophores. The resulting CMS-2 PS displayed selective imaging of mitochondria and exhibited much higher photodynamic therapy efficiency toward cancer cells than that of the commercial PS erythrosine B. This work provides deep insight into the molecular design of heavy-atom-free thiobase-based PSs and simultaneously offers a great opportunity to develop novel mitochondrial-targeting fluorescent indicators with neutral bioinspired platforms.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seonye Heo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Wang YN, Zhang XQ, Qiu LH, Sun R, Xu YJ, Ge JF. Viscosity sensitive endoplasmic reticulum fluorescent probes based on oxazolopyridinium. J Mater Chem B 2021; 9:5664-5669. [PMID: 34190311 DOI: 10.1039/d1tb01106e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of viscosity sensitive fluorescent probes 1a-e were synthesized by linking coumarin and oxazolopyridinium via dimethylene in this paper. The viscosity test of probes 1a-e indicated that the fluorescence intensity of the probes enhanced significantly with the increase of viscosity of the system (0.89-865 cP), and exhibited a nearly OFF-ON response to viscosity at 648 nm, 650 nm and 650 nm, respectively. In addition, cells still had a high survival rate after co-culturing with probes 1a-e for 12 h (94-98%). Meanwhile, the laser confocal experiment showed that the variation of the carbon chain length in the oxazolopyridinium could affect the subcellular region of the localization of the probes in cells. When the length of the carbon chain in oxazolopyridinium was between n-C7H15 and n-C12H23, probes 1b-d had the ability to target the endoplasmic reticulum in the cells. Moreover, probes 1b-d showed no significant change in fluorescence intensity after 35 min of continuous laser confocal irradiation, indicating that they had excellent anti-photobleaching properties.
Collapse
Affiliation(s)
- Ya-Nan Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Xiao-Qing Zhang
- Technology School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Li-Hua Qiu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China. and Soochow College, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- Technology School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| |
Collapse
|