1
|
Sobsey CA, Froehlich BC, Mitsa G, Ibrahim S, Popp R, Zahedi RP, de Bruin EC, Borchers CH, Batist G. mTORC1-Driven Protein Translation Correlates with Clinical Benefit of Capivasertib within a Genetically Preselected Cohort of PIK3CA-Altered Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2058-2074. [PMID: 38954770 PMCID: PMC11320025 DOI: 10.1158/2767-9764.crc-24-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Capivasertib is a potent selective inhibitor of AKT. It was recently FDA approved in combination with fulvestrant to treat HR+, HER2-negative breast cancers with certain genetic alteration(s) activating the PI3K pathway. In phase I trials, heavily pretreated patients with tumors selected for activating PI3K pathway mutations treated with capivasertib monotherapy demonstrated objective response rates of <30%. We investigated the proteomic profile associated with capivasertib response in genetically preselected patients and cancer cell lines. We analyzed samples from 16 PIK3CA-mutated patient tumors collected prior to capivasertib monotherapy in the phase I trial. PI3K pathway proteins were precisely quantified with immuno-Matrix-Assisted Laser Desorption/Ionization-mass spectrometry (iMALDI-MS). Global proteomic profiles were also obtained. Patients were classified according to response to capivasertib monotherapy: "clinical benefit (CB)" (≥12 weeks without progression, n = 7) or "no clinical benefit (NCB)" (progression in <12 weeks, n = 9). Proteins that differed between the patient groups were subsequently quantified in AKT1- or PIK3CA-altered breast cancer cell lines with varying capivasertib sensitivity. The measured concentrations of AKT1 and AKT2 varied among the PIK3CA-mutated tumors but did not differ between the CB and NCB groups. However, analysis of the global proteome data showed that translational activity was higher in tumors of the NCB vs. CB group. When reproducibly quantified by validated LC-MRM-MS assays, the same proteins of interest similarly distinguished between capivasertib-sensitive versus -resistant cell lines. The results provide further evidence that increased mTORC1-driven translation functions as a mechanism of resistance to capivasertib monotherapy. Protein concentrations may offer additional insights for patient selection for capivasertib, even among genetically preselected patients. SIGNIFICANCE Capivasertib's first-in-class FDA approval demonstrates its promise, yet there remains an opportunity to optimize its use. Our results provide new evidence that proteomics can stratify genetically preselected patients on clinical benefit. Characterization of the same profile in cell lines furnishes additional validation. Among PIK3CA-altered tumors, increased mTORC1-driven translation appears to confer intrinsic resistance. Assessing mTORC1 activation could therefore prove a useful complement to the existing genetic selection strategy for capivasertib.
Collapse
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Georgia Mitsa
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | | | - Rene P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| | | | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| | - Gerald Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- McGill Centre for Translational Research in Cancer, Lady Davis Institute, Montreal, QC, Canada.
| |
Collapse
|
2
|
Wang HJ, Xie YB, Zhang PJ, Jiang T. Evaluation of the diagnostic value of serum-based proteomics for colorectal cancer. World J Gastrointest Oncol 2022; 14:1562-1573. [PMID: 36160749 PMCID: PMC9412932 DOI: 10.4251/wjgo.v14.i8.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly malignant cancer with a high incidence and mortality in China. It is urgent to find a diagnostic marker with higher sensitivity and specificity than the traditional approaches for CRC diagnosis.
AIM To provide new ideas for the diagnosis of CRC based on serum proteomics.
METHODS Specimens from 83 healthy people, 62 colon polyp (CRP) patients, and 101 CRC patients were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The diagnostic value of the profiles of differentially expressed proteins was then analyzed.
RESULTS Compared with the healthy control group, CRC patients had elevated expression of 5 proteins and reduced expression of 14 proteins. The area under the curve (AUC) for a differentially expressed protein with a mass-to-charge ratio of 2022.34 was the largest; the AUC was 0.843, which was higher than the AUC of 0.717 observed with carcinoembryonic antigen (CEA), and the sensitivity and specificity of this identified marker were 75.3% and 79.5%, respectively. After cross-validation, the accuracy of diagnosis using levels of this differentially expressed protein was 82.37%. Compared with the CRP group, the expression of 3 proteins in the serum of CRC patients was elevated and 11 proteins were expressed at reduced levels. Proteins possessing mass-to-charge ratio values of 2899.38 and 877.3 were selected to establish a classification tree model. The results showed that the accuracy of CRC diagnosis was 89.5%, the accuracy of CRP diagnosis was 81.6%, and the overall accuracy of this approach was 86.3%. The overall sensitivity and specificity of diagnosis using the proteomics approach were 81.8% and 66.75%, respectively. The sensitivities and specificities of diagnoses based on CEA and carbohydrate antigen 19-9 expression were 55.6% and 91.3% and 65.4% and 65.2%, respectively.
CONCLUSION We demonstrated that serum proteomics may be helpful for the detection of CRC, and it may assist clinical practice for CRC diagnosis.
Collapse
Affiliation(s)
- Hui-Juan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Yi-Bin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Tao Jiang
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|