1
|
Cheng Y, Guan W, Tang L, Huang Y, Yang W. Cationic Amphiphilic Comb-Shaped Polymer Emulsifier for Fabricating Avermectin Nanoemulsion with Exceptional Leaf Behaviors and Multidimensional Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51318-51332. [PMID: 39276181 DOI: 10.1021/acsami.4c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The development of intelligent multifunctional nanopesticides featuring enhanced foliage affinity and hierarchical target release is increasingly pivotal in modern agriculture. In this study, a novel cationic amphiphilic comb-shaped polymer, termed PEI-TA, was prepared via a one-step Michael addition between low-molecular-weight biodegradable polyethylenimine (PEI) and tetradecyl acrylate (TA), followed by neutralization with acetic acid. Using the emulsifier PEI-TA, a positively charged avermectin (AVM) nanoemulsion was prepared via a phase inversion emulsification process. Under optimal formulation, the obtained AVM nanoemulsion (defined as AVM@PEI-TA) demonstrated exceptional properties, including small size (as low as 67.6 nm), high encapsulation efficiency (up to 87.96%), and high stability toward shearing, storage, dilution, and UV irradiation. The emulsifier endowed AVM@PEI-TA with a pronounced thixotropy, so that the droplets exhibited no splash and bounce when they were sprayed on the cabbage leaf. Owing to the electrostatic attraction between the emulsifier and the leaf, AVM@PEI-TA showed improved leaf adhesion, better deposition, and higher washing resistance in contrast to both its negatively charged counterpart and AVM emulsifiable concentrate (AVM-EC). Compared to the large-sized particles, the small-sized particles of the AVM nanoemulsion more effectively traveled long distances through the vascular system of veins after entering the leaf apoplast. Moreover, the nanoparticles lost stability when exposed to multidimensional stimuli, including pH, temperature, esterase, and ursolic acid individually or simultaneously, thereby promoting the release of AVM. The release mechanisms were discussed for understanding the important role of the emulsifier in nanopesticides.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenxun Guan
- Railway Engineering Research Institute, China Academy of Railway Sciences Co. Ltd, Beijing 100081, People's Republic of China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wantai Yang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Iwamoto S, Sueyoshi K, Endo T, Hisamoto H. Fundamental investigation on fluorous nanoemulsion optodes: effect of matrix fluorination on selectivity. ANAL SCI 2024; 40:1787-1792. [PMID: 38795277 DOI: 10.1007/s44211-024-00603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
As fundamental investigation on fluorous nanoemulsion (NE) optodes for highly selective perfluorooctanesulfonate (PFOS-) sensing, the effect of matrix fluorination on selectivity was investigated. Due to the high hydrophobicity of PFOS- itself, it responded in exhaustive mode regardless of the fluorination ratio of the matrix, and the lowest detectable PFOS- concentration was on the order of 10-7 to 10-6 M. On the other hand, the response of non-fluorous interfering anions was suppressed as the fluorination ratio of the matrix increased. It was revealed that the relative selectivity of PFOS- for hydrophobic anions, ClO4-, SCN-, and 1-octanesulfonate (OS-) was improved by more than one order of magnitude, up to nearly two orders of magnitude, and that it was also improved by less than one order of magnitude for hydrophilic anions, Br-, Cl-, and SO4-, in logarithmic selectivity coefficient (log K PFOS - , j opt ).
Collapse
Affiliation(s)
- Soraka Iwamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
3
|
Cheng Y, Pan Z, Tang L, Huang Y, Yang W. Fabrication of Eco-Friendly Hydrolyzed Ethylene-Maleic Anhydride Copolymer-Avermectin Nanoemulsion with High Stability, Adhesion Property, pH, and Temperature-Responsive Releasing Behaviors. Molecules 2024; 29:1148. [PMID: 38474660 DOI: 10.3390/molecules29051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zeyu Pan
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wantai Yang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Huang M, Geng F, Wang Y, Shao C, Liu G, Xu M. A colorimetric and ratiometric photometric sequential assay for ascorbic acid and alkaline phosphatase in serum based on valence states modulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120468. [PMID: 34649124 DOI: 10.1016/j.saa.2021.120468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The photometric method is widely used in real clinical tests due to its simple operation, low cost and convenient. Many of the reported colorimetric ALP assays so far are non- ratiometric because the detection was based on changes in absorbance at a single wavelength. The development of novel colorimetric and ratiometric assay is of importance for quantitatively measuring target with high accuracy. The challenge in the design of ratiometric photometric assay is that the chromophore must have a significant spectral shift before and after binding to the target. Here, we report a colorimetric and ratiometric photometric sequential assay of AA and ALP based on the complexation between ARS and Cu2+ and redox reaction between AA and Cu2+. The absorption band of ARS centered at 425 nm (yellow color), which could be shifted to 510 nm (red color) upon Cu2+ binding. However, as far as we know, this classic color reaction has not been used to develop a ratiometric photometric method to sequentially detect AA and ALP, although photometric methods based on the regulation of other color reagents with oxidizing metal ions have been reported. The proposed sensing system shows a limit of detection for ALP at 0.24 U L-1 and could be applied for detecting ALP in newborn calf serum. The established sensing system makes a useful contribution to the detection of ALP in complex clinical samples.
Collapse
Affiliation(s)
- Min Huang
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engeering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yongxiang Wang
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei 235000, China.
| | - Congying Shao
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Gen Liu
- College of Chemistry & Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition & Sensing, College of Chemistry & Chemical Engeering, Henan Joint International Research Laboratory of Chemo/Biosensing & Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
5
|
Maki K, Oishi R, Mizuta T, Sueyoshi K, Endo T, Hisamoto H. Chloride ion-selective dye liquid nanoemulsion: improved sensor performance due to intermolecular interactions between dye and ionophore. Analyst 2022; 147:1529-1533. [DOI: 10.1039/d2an00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionophore-based dye liquid nanoemulsion sensors exhibiting rapid response, high selectivity, and high sensitivity to chloride were developed. Intermolecular interactions within emulsion contributed to the background suppression.
Collapse
Affiliation(s)
- Kaho Maki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Ryoutarou Oishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 5-3 Yonban-cho, Chiyoda, Tokyo 102-8666, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|