1
|
Zhang X, Tian Y, Shi Y, Liu J, Zhao C, Chang CC, Takarada T, Maeda M, Wang G. Naked-Eye LAMP Assay of M. tuberculosis in Sputum by In Situ Au Nanoprobe Identification: For the In Vitro Diagnostics of Tuberculosis. ACS Infect Dis 2024; 10:2668-2678. [PMID: 38771809 DOI: 10.1021/acsinfecdis.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In spite of the development of diagnostic tests for Mycobacterium tuberculosis (M. tuberculosis), the etiological agent of tuberculosis, there has remained a gap between the established methods and an easily accessible diagnostic test, particularly in developing and resource-poor areas. By combining isothermal amplification of IS6110 as the target gene and recognition by DNA-functionalized Au nanoparticles (DNA-AuNPs), we develop a colorimetric LAMP assay for convenient in vitro diagnostics of tuberculosis with a quick (≤50 min) "yes" or "no" readout. The DNA-AuNPs not only tolerate the interference in the complex LAMP system but also afford in situ identification of the amplicon, allowing for colloidal dispersion via steric effect depending on DNA grafting density. The target-induced stabilization and red appearance of the DNA-AuNPs contrast with the occurrence of gray aggregates in a negative sample. Furthermore, the DNA-AuNPs demonstrate excellent performance after long-term (≥7 months) storage while preserving the unsacrificed sensitivity. The high specificity of the DNA-AuNPs is further demonstrated in the naked-eye LAMP assay of M. tuberculosis in patients' sputum samples. Given the rapidity, cost-effectiveness, and instrument-free characteristics, the naked-eye LAMP assay is particularly beneficial for tuberculosis diagnosis in urgent situations and resource-limited settings and can potentially expedite patient care and treatment initiation.
Collapse
Affiliation(s)
- Xiaochang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yongshuai Tian
- Qingdao Hightop Biotech Co., Ltd., 369 Hedong Road, High-Tech Industrial Development Zone, Qingdao 266111, China
| | - Yali Shi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jianan Liu
- Qingdao Hightop Biotech Co., Ltd., 369 Hedong Road, High-Tech Industrial Development Zone, Qingdao 266111, China
| | - Chenlin Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Tohru Takarada
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Guoqing Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Xie M, Jiang J, Chao J. DNA-Based Gold Nanoparticle Assemblies: From Structure Constructions to Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:9229. [PMID: 38005617 PMCID: PMC10675487 DOI: 10.3390/s23229229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Gold nanoparticles (Au NPs) have become one of the building blocks for superior assembly and device fabrication due to the intrinsic, tunable physical properties of nanoparticles. With the development of DNA nanotechnology, gold nanoparticles are organized in a highly precise and controllable way under the mediation of DNA, achieving programmability and specificity unmatched by other ligands. The successful construction of abundant gold nanoparticle assembly structures has also given rise to the fabrication of a wide range of sensors, which has greatly contributed to the development of the sensing field. In this review, we focus on the progress in the DNA-mediated assembly of Au NPs and their application in sensing in the past five years. Firstly, we highlight the strategies used for the orderly organization of Au NPs with DNA. Then, we describe the DNA-based assembly of Au NPs for sensing applications and representative research therein. Finally, we summarize the advantages of DNA nanotechnology in assembling complex Au NPs and outline the challenges and limitations in constructing complex gold nanoparticle assembly structures with tailored functionalities.
Collapse
Affiliation(s)
| | | | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (M.X.); (J.J.)
| |
Collapse
|
3
|
He Z, Chen Q, Ding S, Wang G, Takarada T, Maeda M. Suppressed DNA base pair stacking assembly of gold nanoparticles in an alcoholic solvent for enhanced ochratoxin A detection in Baijiu. Analyst 2023; 148:1291-1299. [PMID: 36846974 DOI: 10.1039/d3an00016h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The currently established DNA nanoprobes for the detection of mycotoxin from beverages have been limited by complicated sample pretreatment and uncontrollable nanoparticle flocculation in complex systems. We develop a rapid colorimetric approach for ochratoxin A (OTA) detection in Baijiu in a sample-in/"yes" or "no" answer-out fashion through target-modulated base pair stacking assembly of DNA-functionalized gold nanoparticles (DNA-AuNPs). The colorimetric signification of OTA relies on the competition of OTA with the AuNP surface-grafted DNA in binding with an OTA-targeted aptamer. The specific recognition of OTA by the aptamer prevents DNA duplex formation on the AuNP surface, thereby inhibiting the base pair stacking assembly of the DNA-AuNPs and giving rise to a "turn-on" color. By further suppressing DNA hybridization using a bulged loop design and an alcohol solution, the DNA-AuNPs exhibit an improved reproducibility for OTA sensing while maintaining excellent susceptivity to OTA. A detection limit of 88 nM was achieved along with high specificity towards OTA, which is lower than the maximum tolerated level of OTA in foodstuffs defined by countries worldwide. The entire reaction time, avoiding sample pretreatment, is less than 17 min. The DNA-AuNPs with anti-interference features and sensitive "turn-on" performance promise convenient on-site detection of mycotoxin from daily beverages.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Qianyuan Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tohru Takarada
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Shi Y, Chen Q, Liu Y, Wang G. Capability of Au nano-rhombic dodecahedra in a label-free colorimetric assay: application in the determination of S 2− and Hg 2+. Analyst 2022; 147:3578-3584. [DOI: 10.1039/d2an00852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au nano-rhombic dodecahedra with high sensitivity to the environmental refractive index afford sensitive detection of S2- and Hg2+.
Collapse
Affiliation(s)
- Yali Shi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianyuan Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuejun Liu
- Qingdao Yuanxin Testing Technology Co., Ltd, 59 Xinyue Road, Qingdao, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|