1
|
Ma C, Zhu Y, Zhang Z, Chen X, Ji Z, Zhang LN, Xu Q. Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO - via resonance energy transfer. Anal Bioanal Chem 2024; 416:4691-4703. [PMID: 38512384 DOI: 10.1007/s00216-024-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Electrochemiluminescence resonance energy transfer (ECL-RET) is a versatile signal transduction strategy widely used in the fabrication of chem/biosensors. However, this technique has not yet been applied in visualized imaging analysis of intracellular species due to the insulating nature of the cell membrane. Here, we construct a ratiometric ECL-RET analytical method for hypochlorite ions (ClO-) by ECL luminophore, with a luminol derivative (L-012) as the donor and a fluorescence probe (fluorescein hydrazide) as the acceptor. L-012 can emit a strong blue ECL signal and fluorescein hydrazide has negligible absorbance and fluorescence signal in the absence of ClO-. Thus, the ECL-RET process is turned off at this time. In the presence of ClO-, however, the closed-loop hydrazide structure in fluorescein hydrazide is opened via specific recognition with ClO-, accompanied with intensified absorbance and fluorescence signal. Thanks to the spectral overlap between the ECL spectrum of L-012 and the absorption spectrum of fluorescein, the ECL-RET effect is gradually recovered with the addition of ClO-. Furthermore, the ECL-RET system has been successfully applied to image intracellular ClO-. Although the insulating nature of the cell itself can generate a shadow ECL pattern in the cellular region, extracellular ECL emission penetrates the cell membrane and excites intracellular fluorescein generated by the reactions between fluorescein hydrazide and ClO-. The cell imaging strategy via ECL-RET circumvents the blocking of the cell membrane and enables assays of intracellular species. The importance of the ECL-RET platform lies in calibrating the fluctuation from the external environment and improving the selectivity by using fluorescent probes. Therefore, this ratiometric ECL sensor has shown broad application prospects in the identification of targets in clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Xuan Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Lu-Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Liu T, Chen YN, Tan DX, Han FS. The 2,4-diarylquinoline-based Platinum(II) complexes: Synthesis, photophysical and electrochemical properties, and application in detection of hypochlorite. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
5
|
Zhu G, Chen Z, Song H, You A, Li Z. A theoretical study on the on-off phosphorescence of novel Pt(ii)/Pt(iv)-bisphenylpyridinylmethane complexes. RSC Adv 2022; 12:18238-18244. [PMID: 35800316 PMCID: PMC9214957 DOI: 10.1039/d2ra03060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
An in-depth theoretical study on the Pt(ii)/Pt(iv)-bisphenylpyridinylmethane complexes was carried out, which focused on the geometric/electronic structures, excitation procedures, on-off phosphorescence mechanisms, and structure-optical performance relationships. The key roles of the linkages (LK) connected in the middle of phenylpyridines were carefully investigated using multiple wavefunction analysis methods, such as non-covalent interaction (NCI) visualizations and natural bond orbital (NBO) studies. The phosphorescence-off phenomenon was considered by hole-electron analysis and visualizations, spin-orbit coupling (SOC) studies, and NBO analysis. Through these investigations, the relationship of the substituents in LK and the optical performances were revealed, as well as the fundamental principles of the phosphorescence-quenching mechanism in Pt(iv) complexes, which pave the way for further performance/structural renovation works. In addition, an intuitive visualization method was developed using a heatmap to quantitatively express the SOC matrix elementary (SOCME), which is helpful for big data simplification for phosphorescence analysis.
Collapse
Affiliation(s)
- Guoxun Zhu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| | - Zhenping Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| | - Huacan Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
| | - Ao You
- School of Eco-Environmental Technology, Guangdong Industry Polytechnic 152 Xingang West Road Guangzhou 510300 P. R. China
| | - Zhengquan Li
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| |
Collapse
|