1
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
2
|
Labra-Vázquez P, Gressier M, Rioland G, Menu MJ. A review on solution- and vapor-responsive sensors for the detection of phthalates. Anal Chim Acta 2023; 1282:341828. [PMID: 37923401 DOI: 10.1016/j.aca.2023.341828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Phthalic acid esters, largely referred to as phthalates, are today acknowledged as important pollutants used in the manufacture of polyvinyl chloride (PVC)-based plastics, whose use extends to almost every aspect of modern life. The risk of exposure to phthalates is particularly relevant as high concentrations are regularly found in drinking water, food-contact materials and medical devices, motivating an immense body of research devoted to methods for their detection in liquid samples. Conversely, phthalate vapors have only recently been acknowledged as potentially important atmospheric pollutants and as early fire indicators; additionally, deposition of these vapors can pose significant problems to the proper functioning of spacecraft and diverse on-board devices, leading to major space agencies recognizing the need of developing vapor-responsive phthalate sensors. In this manuscript we present a literature survey on solution- and vapor-responsive sensors and analytical assays for the detection of phthalates, providing a detailed analysis of a vast array of analytical data to offer a clear idea on the analytical performance (limits of detection and quantification, linear range) and advantages provided by each class of sensor covered in this review (electrochemical, optical and vapor-responsive) in the context of their potential real-life applications; the manuscript also gives detailed fundamental information on the various physicochemical responses exploited by these sensors and assays that could potentially be harnessed by new researchers entering the field.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| | - Marie Gressier
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 31401, Toulouse, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
3
|
Bu L, Su C, Song Q, Jiang D, Shan X, Wang W, Chen Z. A molecularly imprinted polypyrrole electrochemiluminescence sensor based on a novel zinc-based metal-organic framework and chitosan for determination of enrofloxacin. Analyst 2023; 148:6087-6096. [PMID: 37916516 DOI: 10.1039/d3an01236k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.
Collapse
Affiliation(s)
- Liyin Bu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qingyuan Song
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
4
|
Yang J, Zeng H, Chai Y, Yuan R, Liu H. Ultrasensitive photoelectrochemical biosensor amplified by target induced assembly of cruciform DNA nanostructure for the detection of dibutyl phthalate. Anal Chim Acta 2023; 1262:341242. [PMID: 37179065 DOI: 10.1016/j.aca.2023.341242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this work, an ultra-sensitive signal quenched photoelectrochemical (PEC) aptasensor for dibutyl phthalate (DBP) detection was constructed by using a target induced cruciform DNA structure as signal amplifier and g-C3N4/SnO2 composite as signal indicator. Impressively, the designed cruciform DNA structure shows high signal amplification efficiency due to the reduced reaction steric hindrance because of its mutually separated and repelled tails, multiple recognition domains, and a fixed direction for the sequential identification of the target. Therefore, the fabricated PEC biosensor demonstrated a low detection limit of 0.3 fM for DBP in a wide linear range of 1 fM to 1 nM. This work offered a novel nucleic acid signal amplification approach for enhancing the sensitivity of PEC sensing platforms for the detection of phthalates (PAEs)-based plasticizer, laying the foundation for its utilization in the determine of real environmental pollutants.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongmei Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Yang Y, Wei H, Wang X, Sun D, Yu L, Bai B, Jing X, Qin S, Qian H. MOF/COF heterostructure hybrid composite-based molecularly imprinted photoelectrochemical sensing platform for determination of dibutyl phthalate: A further expansion for MOF/COF application. Biosens Bioelectron 2023; 223:115017. [PMID: 36566595 DOI: 10.1016/j.bios.2022.115017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
A novel metal-organic framework (MOF)/covalent-organic framework (COF) heterostructure hybrid composite (NH2-UiO-66/TpPa-1-COF) with excellent photoactivity was developed, which further acted as the photoelectrochemical sensitized layer of a molecularly imprinted photoelectrochemical (MIP-PEC) sensor for extremely sensitive and selective determination of dibutyl phthalate (DBP). The NH2-UiO-66/TpPa-1-COF was synthesized using a simple one-step solvothermal method, which showed improved photocurrent response owing to heterojunction formation, favorable energy-band configuration and strong light absorption capacity. To improve the sensing performance, molecularly imprinted polymer (MIP) was developed by sol-gel polymerization method as the recognition component of PEC sensor. The specific binding of imprinting sites towards DBP could block the electron transfer, causing decreased photocurrent response of the MIP-PEC sensor. The MIP-PEC sensor showed a wide detection range from 0.1 nmol L-1 to 100 μmol L-1 with a limit of detection of 3.0 × 10-11 mol L-1 under optimal conditions. Meanwhile, the proposed MIP-PEC sensor showed good stability, selectivity, reproducibility, and applicability in real samples. This is the first attempt to apply MOF/COF heterostructure hybrid composite for MIP-PEC sensor construction, providing new insight into the potential applications of microporous crystalline framework heterostructure hybrid composite in the sensing field.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Xinghuacun College, Shanxi University, Taiyuan, 030006, China.
| | - Haohao Wei
- School of Life Science, Xinghuacun College, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Xinghuacun College, Shanxi University, Taiyuan, 030006, China
| | - Baoqing Bai
- School of Life Science, Xinghuacun College, Shanxi University, Taiyuan, 030006, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Hailong Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Wang H, Wang H, Li Y, Wang H, Ren X, Wei Q, Wu D. Construction of a photoelectrochemical immunosensor based on CuInS 2 photocathode and BiVO 4/BiOI/Ag 2S photoanode and sensitive detection of NSE. Biosens Bioelectron 2022; 211:114368. [PMID: 35597146 DOI: 10.1016/j.bios.2022.114368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023]
Abstract
In this paper, a photoelectrochemical (PEC) immunosensor was constructed to detect neuron-specific enolase (NSE) with ITO/BiVO4/BiOI/Ag2S as photoanode and ITO/CuInS2 as photocathode. Due to its excellent photocurrent response, Ag2S sensitized BiVO4/BiOI composite was selected to provide stable photocurrent in place of the traditional Pt electrode. ITO/CuInS2 electrode was used to immobilize biomolecules, which solved the deficiency of poor anti-interference ability of single photoanode. Under the optimal experimental conditions, the PEC immunosensor had outstanding linear relationship within the range of NSE concentration from 5 pg/mL-200 ng/mL, and the detection limit was 1.2 pg/mL. The constructed PEC immunosensor had two advantages. On the one hand, the PEC immunosensor was built on the photocathode, which had better anti-interference ability because of the separation of light capture and biomolecular recognition process. On the other hand, the introduction of photoanode increased the photocurrent response and reduced the detection limit of target antigen. The PEC immunosensor had good stability, reproducibility and specificity, and provided a broad prospect for the detection of other molecules.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
10
|
Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
El-Sharif H, Patel S, Ndunda E, Reddy S. Electrochemical detection of dioctyl phthalate using molecularly imprinted polymer modified screen-printed electrodes. Anal Chim Acta 2022; 1196:339547. [DOI: 10.1016/j.aca.2022.339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/01/2022]
|
12
|
Wang L, Lin X, Liu T, Zhang Z, Kong J, Yu H, Yan J, Luan D, Zhao Y, Bian X. Reusable and universal impedimetric sensing platform for the rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film. Analyst 2022; 147:4433-4441. [DOI: 10.1039/d2an01122k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bacteria-imprinted polythiophene film (BIF)-based impedimetric sensor was proposed for the rapid and sensitive detection of S. aureus. A significant improvement is the reduced time for both BIF fabrication (15 min) and bacterial capturing (10 min).
Collapse
Affiliation(s)
- Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Kong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hai Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
13
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|