1
|
Le MT, Holden DT, Manheim JM, Dziekonski ET, Iyer K, Graham Cooks R. Two-Dimensional Tandem Mass Spectrometry for Biopolymer Structural Analysis. Angew Chem Int Ed Engl 2024; 63:e202315904. [PMID: 38117612 DOI: 10.1002/anie.202315904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Biopolymer analysis, including proteomics and glycomics, relies heavily on the use of mass spectrometry for structural elucidation, including sequence determination. Novel methods to improve sample workup, instrument performance, and data analysis continue to be developed to address shortcomings associated with sample preparation, analysis time, data quality, and data interpretation. Here, we present a new method that couples in-source collision-induced dissociation (IS-CID) with two-dimensional tandem mass spectrometry (2D MS/MS) as a way to simplify proteomics and glycomics workflows while also providing additional insight into analyte structures over traditional MS/MS experiments. Specifically, IS-CID is employed as a gas-phase digestion method, i.e., to break down intact full-length polysaccharide or peptide ions prior to mass analysis. The resulting mixtures of oligomeric ions are analyzed by 2D-MS/MS, a technique that allows association of product ions with their precursor ions without isolation of the latter. A novel data analysis strategy is introduced to leverage the second dimension of 2D MS/MS spectra, in which stairstep patterns, representing outputs of a molecule's MSn scans, are extracted for structural interconnectivity information on the oligomer. The results demonstrate the potential applicability of 2D MS/MS strategies to the modern omics workflow and structural analysis of various classes of biopolymers.
Collapse
Affiliation(s)
- MyPhuong T Le
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Dylan T Holden
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Jeremy M Manheim
- Merck & Co., Inc., Analytical Research and Development, Rahway, NJ 07065, USA
| | - Eric T Dziekonski
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Kiran Iyer
- Merck & Co., Inc., Analytical Research and Development, Rahway, NJ 07065, USA
| | - R Graham Cooks
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Ivanova B. Special Issue with Research Topics on "Recent Analysis and Applications of Mass Spectra on Biochemistry". Int J Mol Sci 2024; 25:1995. [PMID: 38396673 PMCID: PMC10888122 DOI: 10.3390/ijms25041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Analytical mass spectrometry applies irreplaceable mass spectrometric (MS) methods to analytical chemistry and chemical analysis, among other areas of analytical science [...].
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
3
|
Czajkowska A, Korsak D, Fiedoruk-Pogrebniak M, Koncki R, Strzelak K. Turbidimetric flow analysis system for the investigation of microbial growth. Talanta 2024; 268:125303. [PMID: 37852015 DOI: 10.1016/j.talanta.2023.125303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
The monitoring of life of microbial populations is of the uttermost importance in environmental and food analysis, agriculture, as well as in medicine. The duration of bacteria adaptation to new environmental conditions, its lifetime and the divisions' pace are the key information in many studies. It was found that the fully-mechanized flow analysis system based on solenoid valves and pumps, paired with a dedicated flow-through optoelectronic detector can be successfully applied for monitoring of bacteria growth. The applicability of the designed multicommutated flow analysis (MCFA) system was proved by analysis of solutions containing bacteria cells proceeded by tests of McFarland (McF) standards. The developed setup allowed modelling and simulation of microbial growth, as well as monitoring of the bacteria growth in real-time manner to be carried out. The monitor is useful for the quantitative estimation of the basic parameters of bacteria population like its size, the rate of bacteria multiplication, as well as the times of lag, log and stationary phases of microbial growth.
Collapse
Affiliation(s)
| | - Dorota Korsak
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Robert Koncki
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Kamil Strzelak
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Gonzalez LE, Snyder DT, Casey H, Hu Y, Wang DM, Guetzloff M, Huckaby N, Dziekonski ET, Wells JM, Cooks RG. Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry. Anal Chem 2023; 95:17082-17088. [PMID: 37937965 DOI: 10.1021/acs.analchem.3c04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Biothreat detection has continued to gain attention. Samples suspected to fall into any of the CDC's biothreat categories require identification by processes that require specialized expertise and facilities. Recent developments in analytical instrumentation and machine learning algorithms offer rapid and accurate classification of Gram-positive and Gram-negative bacterial species. This is achieved by analyzing the negative ions generated from bacterial cell extracts with a modified linear quadrupole ion-trap mass spectrometer fitted with two-dimensional tandem mass spectrometry capabilities (2D MS/MS). The 2D MS/MS data domain of a bacterial cell extract is recorded within five s using a five-scan average after sample preparation by a simple extraction. Bacteria were classified at the species level by their lipid profiles using the random forest, k-nearest neighbor, and multilayer perceptron machine learning models. 2D MS/MS data can also be treated as image data for use with image recognition algorithms such as convolutional neural networks. The classification accuracy of all models tested was greater than 99%. Adding to previously published work on the 2D MS/MS analysis of bacterial growth and the profiling of sporulating bacteria, this study demonstrates the utility and information-rich nature of 2D MS/MS in the identification of bacterial pathogens at the species level when coupled with machine learning.
Collapse
Affiliation(s)
- L Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette , Indiana 47907, United States
| | - Dalton T Snyder
- Teledyne FLIR Detection, West Lafayette, Indiana 47907, United States
| | - Harman Casey
- Teledyne FLIR Detection, West Lafayette, Indiana 47907, United States
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette , Indiana 47907, United States
| | - Donna M Wang
- Department of Chemistry, Purdue University, West Lafayette , Indiana 47907, United States
| | - Megan Guetzloff
- Teledyne FLIR Detection, West Lafayette, Indiana 47907, United States
| | - Nicole Huckaby
- Teledyne FLIR Detection, West Lafayette, Indiana 47907, United States
| | - Eric T Dziekonski
- Department of Chemistry, Purdue University, West Lafayette , Indiana 47907, United States
| | - J Mitchell Wells
- Teledyne FLIR Detection, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette , Indiana 47907, United States
| |
Collapse
|
5
|
Abstract
Mass spectrometry (MS) is one of the most widely used technologies in the chemical sciences. With applications spanning the monitoring of reaction products, the identification of disease biomarkers, and the measurement of thermodynamic parameters and aspects of structural biology, MS is well established as a universal analytical tool applicable to small compounds as well as large molecular complexes. Regardless of the application, the generation of gas-phase ions from neutral compounds is a key step in any MS experiment. However, this ionization step was for many years limited to high-energy approaches that required gas-phase analytes and thus it was restricted to volatile samples. Over the last few decades, new methodologies have been developed to address this limitation and facilitate ionization of biological molecules. Electrospray ionization (ESI) is the most broadly used of these methods, as it facilitates the ionization of intact polar compounds from solution. Twenty years ago, our group reported a new ionization method that uses a charged solvent spray to impact a surface, generating ions from objects rather than just solutions and doing so directly in the ambient environment with no vacuum requirements and little to no sample preparation. This method was termed desorption electrospray ionization (DESI), and it initiated a new field that would come to be known as ambient mass spectrometry. The simplicity and wide applicability of the DESI technology—and the tens of ambient ionization methods developed subsequently—revolutionized the MS analysis of complex materials for their organic components, especially for in situ applications. This Account describes the history of DESI, starting with the development of the technique from early electrosonic spray ionization (ESSI) experimental observations as well as the studies leading to the understanding of its mechanism as a “droplet pick-up” phenomenon involving sequential events (i.e. , thin film formation, solid–liquid extraction, secondary droplet generation, and ESI-like ionization from these droplets). We also overview the developments and applications of the technology that have been demonstrated by our group during the last two decades. In particular, we describe (i) the use of DESI for tissue imaging, one of its more significant applications to date, and its extension to intraoperative clinical diagnosis; (ii) the integration of the technology with portable instrumentation for in situ analysis, especially when coupled with tandem mass spectrometry (MS/MS); (iii) the use of DESI microdroplets as microvessels to accelerate organic reactions by orders of magnitude compared to those in bulk solution; and (iv) the combination of all these capabilities for automated high-throughput experiments aimed at accelerating drug discovery.
Collapse
Affiliation(s)
- Nicolás M Morato
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - R Graham Cooks
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Rankin‐Turner S, Sears P, Heaney LM. Applications of ambient ionization mass spectrometry in 2022: An annual review. ANALYTICAL SCIENCE ADVANCES 2023; 4:133-153. [PMID: 38716065 PMCID: PMC10989672 DOI: 10.1002/ansa.202300004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2024]
Abstract
The development of ambient ionization mass spectrometry (AIMS) has transformed analytical science, providing the means of performing rapid analysis of samples in their native state, both in and out of the laboratory. The capacity to eliminate sample preparation and pre-MS separation techniques, leading to true real-time analysis, has led to AIMS naturally gaining a broad interest across the scientific community. Since the introduction of the first AIMS techniques in the mid-2000s, the field has exploded with dozens of novel ion sources, an array of intriguing applications, and an evident growing interest across diverse areas of study. As the field continues to surge forward each year, ambient ionization techniques are increasingly becoming commonplace in laboratories around the world. This annual review provides an overview of AIMS techniques and applications throughout 2022, with a specific focus on some of the major fields of research, including forensic science, disease diagnostics, pharmaceuticals and food sciences. New techniques and methods are introduced, demonstrating the unwavering drive of the analytical community to further advance this exciting field and push the boundaries of what analytical chemistry can achieve.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Patrick Sears
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordUK
| | - Liam M Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
7
|
Gonzalez LE, Szalwinski LJ, Sams TC, Dziekonski ET, Cooks RG. Metabolomic and Lipidomic Profiling of Bacillus Using Two-Dimensional Tandem Mass Spectrometry. Anal Chem 2022; 94:16838-16846. [DOI: 10.1021/acs.analchem.2c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- L. Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lucas J. Szalwinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas C. Sams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric T. Dziekonski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|