1
|
Zhang Y, Zhu J, Zhao J, Wang X, Wei T, Gao T. A single-microbe living bioelectronic sensor for intracellular amperometric analysis. Biosens Bioelectron 2024; 265:116648. [PMID: 39178718 DOI: 10.1016/j.bios.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of "Warburg Effect". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.
Collapse
Affiliation(s)
- Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Langlard A, Smida H, Chevalet R, Thobie-Gautier C, Boujtita M, Lebègue E. Computer-Assisted Processing of Current Step Signals in Single Blocking Impact Electrochemistry. ACS MEASUREMENT SCIENCE AU 2024; 4:585-592. [PMID: 39430961 PMCID: PMC11487761 DOI: 10.1021/acsmeasuresciau.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024]
Abstract
Current step signals related to single-entity collisions in blocking impact electrochemistry were analyzed by computer-assisted processing for estimating the size distributions of various particles. In this work, three different types of entities were studied by single blocking impact electrochemistry: polystyrene nanospheres (350 nm diameter) and microspheres (1 μm diameter), phospholipid liposomes (300 nm diameter) and two different strains of Gram-negative bacillus bacteria (Escherichia coli and Shewanella oneidensis). The size estimations of these different entities from the current step signal analysis were compared and discussed according to the shape and size of each entity. From the magnitude of the current step transient, the size distribution of each entity was calculated by a new computer program assisting in the detection and analysis of single impact events in chronoamperometry measurements. The data processing showed that the size distributions obtained from the electrochemical data agreed with the dynamic light scattering and atomic force microscopy data for nanospheres and liposomes. In contrast, the size estimation calculated from the electrochemical data was underestimated for microspheres and bacteria. We demonstrated that our computer program was efficient for detecting and analyzing the collision events in single blocking impact electrochemistry for various entities from spherical hard nanoparticles to micrometer-sized rod-shaped living bacteria.
Collapse
Affiliation(s)
- Arthur Langlard
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Hassiba Smida
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Romain Chevalet
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | | | - Estelle Lebègue
- Nantes Université,
CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Hsu CY, Saleh RO, Pallathadka H, Kumar A, Mansouri S, Bhupathi P, Jasim Ali SH, Al-Mashhadani ZI, Alzubaidi LH, Hizam MM. Advances in electrochemical-optical dual-mode biosensors for detection of environmental pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1306-1322. [PMID: 38344759 DOI: 10.1039/d3ay02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
4
|
Jiang L, Luo L, Zhang Z, Kang C, Zhao Z, Chen D, Long Y. Rapid detection of Pseudomonas syringae pv. actinidiae by electrochemical surface-enhanced Raman spectroscopy. Talanta 2024; 268:125336. [PMID: 37924805 DOI: 10.1016/j.talanta.2023.125336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Bacterial cancer caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to kiwifruit in the world, and there is still a lack of effective control measures. The field of bacterial detection needs a fast, easy-to-use and sensitive identification platform. The current bacterial identification methods are lack of time efficiency, which brings problems to many sectors of society. Surface-enhanced Raman spectroscopy (SERS) and electrochemistry (EC) have been studied as possible candidates for bacterial detection because of their high sensitivity for the detection of biomolecules. In this work, SERS, EC and electrochemical surface-enhanced Raman spectroscopy (EC-SERS) were used for the first time to study the adsorption and EC behavior of Psa on the surface of nanostructured silver electrodes. Two different Raman spectra of a single analyte were obtained, and this dual detection was realized. Silver nanoparticles with iodide and calcium ions (Ag@ICNPs) were synthesized as SERS substrates significantly enhanced the characteristic signal peaks of Psa, and the limit of detection (LOD) is as low as 1.0 × 102 cfu/mL. Chemical imaging results show that the application of negative voltage can significantly improve the spectrum quality, showing a higher signal at -0.8 V, indicating that Psa molecules may have potential-induced reorientation on the electrode surface. Therefore, EC-SERS has the ability to greatly improve the SERS performance of bacteria in terms of peak intensity and spectral richness.
Collapse
Affiliation(s)
- Lingli Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Longhui Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Zhuzhu Zhang
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Chao Kang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Zhibo Zhao
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China
| | - Dongmei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China.
| | - Youhua Long
- Engineering and Technology Research Center of Kiwifruit, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Saulnier J, Jose C, Lagarde F. Electrochemical techniques for label-free and early detection of growing microbial cells and biofilms. Bioelectrochemistry 2024; 155:108587. [PMID: 37839250 DOI: 10.1016/j.bioelechem.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Over the past decades, the misuse or abuse of antimicrobial agents to prevent and/or control infections has led to increased resistance of microbes to treatments, and antimicrobial resistance is now a subject of major global concern. In some cases, microbes possess the capacity to attach to biotic or abiotic surfaces, and to produce a protective polymeric matrix, forming biofilms of higher resistance and virulence compared to planktonic forms. To avoid further excessive and inappropriate use of antimicrobials, and to propose new effective treatments, it is very important to detect planktonic microbes and microbial biofilms in their early growth stage and at the point of need. In this review, we provide an overview of currently available electrochemical techniques, in particular impedimetric and voltamperometric methods, highlighting recent advances in the field and illustrating with examples in antibiotic susceptibility testing and microbial biofilm monitoring.
Collapse
Affiliation(s)
- Joelle Saulnier
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Catherine Jose
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
6
|
Janik M, Lechowicz K, Pituła E, Warszewski J, Koba M, Śmietana M. Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor. Sci Rep 2023; 13:15523. [PMID: 37726408 PMCID: PMC10509163 DOI: 10.1038/s41598-023-42853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Spectroelectrochemical (SEC) measurements play a crucial role in analytical chemistry, utilizing transparent or semitransparent electrodes for optical analysis of electrochemical (EC) processes. The EC readout provides information about the electrode's state, while changes in the transmitted optical spectrum help identify the products of EC reactions. To enhance SEC measurements, this study proposes the addition of optical monitoring of the electrode. The setup involves using a polymer-clad silica multimode fiber core coated with indium tin oxide (ITO), which serves as both the electrode and an optical fiber sensor. The ITO film is specifically tailored to exhibit the lossy-mode resonance (LMR) phenomenon, allowing for simultaneous optical monitoring alongside EC readouts. The LMR response depends on the properties of the ITO and the surrounding medium's optical properties. As a result, the setup offers three types of interrogation readouts: EC measurements, optical spectrum analysis corresponding to the volume of the analyte (similar to standard SEC), and LMR spectrum analysis reflecting the state of the sensor/electrode surface. In each interrogation path, cyclic voltammetry (CV) experiments were conducted individually with two oxidation-reduction reaction (redox) probes: potassium ferricyanide and methylene blue. Subsequently, simultaneous measurements were performed during chronoamperometry (CA) with the sensor, and the cross-correlation between the readouts was examined. Overall, this study presents a novel and enhanced SEC measurement approach that incorporates optical monitoring of the electrode. It provides a comprehensive understanding of EC processes and enables greater insights into the characteristics of the analyte.
Collapse
Affiliation(s)
- Monika Janik
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
| | - Katarzyna Lechowicz
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Emil Pituła
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Jakub Warszewski
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Marcin Koba
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- National Institute of Telecommunications, Szachowa 1, 02-894, Warsaw, Poland
| | - Mateusz Śmietana
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| |
Collapse
|
7
|
Wang M, Feng L, Luo G, Feng T, Zhao S, Wang H, Shi S, Liu T, Fu Q, Li J, Wang N, Yuan Y. Ultrafast extraction of uranium from seawater using photosensitized biohybrid system with bioinspired cascaded strategy. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130620. [PMID: 37056004 DOI: 10.1016/j.jhazmat.2022.130620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
The highly effective utilization of uranium resources in global seawater is a viable method to satisfy the rising demands for fueling nuclear energy industry. Herein, inspired by the multi-mechanisms of the marine bacteria for uranium immobilization, CdS nanoparticles are deposited on the cell of marine bacterial strain Bacillus velezensis UUS-1 to create a photosensitized biohybrid system UUS-1/CdS. This system achieves high uranium extraction efficiency using a cascaded strategy, where the bacterial cells guarantee high extraction selectivity and the photosensitive CdS nanoparticles realize cascading photoreduction of high soluble U(VI) to low soluble U(IV) to enhance extraction capacity. As one of the fastest-acting adsorbents in natural seawater, a high extraction capacity for uranium of 7.03 mg g-1 is achieved with an ultrafast extraction speed of 4.69 mg g-1 d-1. The cascaded strategy promisingly improves uranium extraction performance and pioneers a new direction for the design of adsorbents to extract uranium from seawater.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Lijuan Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Guangsheng Luo
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Tiantian Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Shilei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Hui Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Se Shi
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Tao Liu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China
| | - Qiongyao Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Jingquan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Ning Wang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| | - Yihui Yuan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
8
|
Trends in single-impact electrochemistry for bacteria analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04568-z. [PMID: 36754873 DOI: 10.1007/s00216-023-04568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Single-impact electrochemistry for the analysis of bacteria is a powerful technique for biosensing applications at the single-cell scale. The sensitivity of this electro-analytical method has been widely demonstrated based on chronoamperometric measurements at an ultramicroelectrode polarized at the appropriate potential of redox species in solution. Furthermore, the most recent studies display a continuous improvement in the ability of this sensitive electrochemical method to identify different bacterial strains with better selectivity. To achieve this, several strategies, such as the presence of a redox mediator, have been investigated for detecting and identifying the bacterial cell through its own electrochemical behavior. Both the blocking electrochemical impacts method and electrochemical collisions of single bacteria with a redox mediator are reported in this review and discussed through relevant examples. An original sensing strategy for virulence factors originating from pathogenic bacteria is also presented, based on a recent proof of concept dealing with redox liposome single-impact electrochemistry. The limitations, applications, perspectives, and challenges of single-impact electrochemistry for bacteria analysis are briefly discussed, based on the most significant published data.
Collapse
|
9
|
Gangwar R, Rao KT, Khatun S, Rengan AK, Subrahmanyam C, Krishna Vanjari SR. Label-free miniaturized electrochemical nanobiosensor triaging platform for swift identification of the bacterial type. Anal Chim Acta 2022; 1233:340482. [DOI: 10.1016/j.aca.2022.340482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/01/2022]
|
10
|
Electrochemical and spectroscopic evaluation of 6-MP and its interaction with carbon dots and dsDNA. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Gangwar R, Ray D, Rao KT, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Plasma Functionalized Carbon Interfaces for Biosensor Application: Toward the Real-Time Detection of Escherichia coli O157: H7. ACS OMEGA 2022; 7:21025-21034. [PMID: 35755381 PMCID: PMC9219096 DOI: 10.1021/acsomega.2c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nonthermal plasma, a nondestructive, fast, and highly reproducible surface functionalization technique, was used to introduce desired functional groups onto the surface of carbon powder. The primary benefit is that it is highly scalable, with a high throughput, making it easily adaptable to bulk production. The plasma functionalized carbon powder was later used to create highly specific and low-cost electrochemical biosensors. The functional groups on the carbon surface were confirmed using NH3-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) analysis. In addition, for biosensing applications, a novel, cost-effective, robust, and scalable electrochemical sensor platform comprising in-house-fabricated carbon paste electrodes and a miniaturized E-cell was developed. Biotin-Streptavidin was chosen as a model ligand-analyte combination to demonstrate its applicability toward biosensor application, and then, the specific identification of the target Escherchia coli O157:H7 was accomplished using an anti-E. coli O157:H7 antibody-modified electrode. The proposed biosensing platform detected E. coli O157:H7 in a broad linear range of (1 × 10-1-1 × 106) CFU/mL, with a limit of detection (LOD) of 0.1 CFU/mL. In addition, the developed plasma functionalized carbon paste electrodes demonstrated high specificity for the target E. coli O157:H7 spiked in pond water, making them ideal for real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Debjyoti Ray
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Hyderabad 502284, India
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, NT 00000, Hong Kong SAR, China
| | - Karri Trinadha Rao
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Sajmina Khatun
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | | | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Siva Rama Krishna Vanjari
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|