1
|
Liu Z, Liu C, He L, Liu J, Li L, Yang S, Tan Y, Liu X, Xiao X. A Cascade Signal Amplification Strategy for the Ultrasensitive Fluorescence Detection of Cu 2+ via λ-Exonuclease-Assisted Target Recycling with Mismatched Catalytic Hairpin Assembly. BIOSENSORS 2023; 13:918. [PMID: 37887111 PMCID: PMC10605925 DOI: 10.3390/bios13100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Herein, an ultrasensitive DNAzyme-based fluorescence biosensor for detecting Cu2+ was designed using the cascade signal amplification strategy, coupling λ-exonuclease-assisted target recycling and mismatched catalytic hairpin assembly (MCHA). In the designed detection system, the target, Cu2+, can activate the Cu2+-dependent DNAzyme to cause a cleavage reaction, releasing ssDNA (tDNA). Then, tDNA binds to hairpin DNA (H0) with an overhanging 5'-phosphorylated terminus to form dsDNA with a blunt 5'-phosphorylated terminus, which activates the dsDNA to be digested by λ-Exo and releases tDNA along with another ssDNA (iDNA). Subsequently, the iDNA initiates MCHA, which can restore the fluorescence of carboxyfluorescein (FAM) previously quenched by tetramethylrhodamine (TAMRA), resulting in a strong fluorescent signal. Furthermore, MCHA efficiently improves the signal-to-noise ratio of the detection system. More importantly, tDNA recycling can be achieved with the λ-Exo digestion reaction to release more iDNA, efficiently amplifying the fluorescent signal and further improving the sensitivity to Cu2+ with a detection limit of 60 fM. The practical application of the developed biosensor was also demonstrated by detecting Cu2+ in real samples, proving it to be an excellent analytical strategy for the ultrasensitive quantification of heavy metal ions in environmental water sources.
Collapse
Affiliation(s)
- Zhen Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Chen Liu
- Hunan Province Key Laboratory for Typical Environmental Pollution and Health Hazards, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
| | - Liqiong He
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Jinquan Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Le Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Yan Tan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Xing Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
| | - Xilin Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; (Z.L.); (L.H.); (L.L.); (S.Y.); (Y.T.); (X.L.)
- State Key Laboratory of Chemo & Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Furletov A, Apyari V, Volkov P, Torocheshnikova I, Dmitrienko S. Solid-Phase Spectrometric Determination of Organic Thiols Using a Nanocomposite Based on Silver Triangular Nanoplates and Polyurethane Foam. SENSORS (BASEL, SWITZERLAND) 2023; 23:7994. [PMID: 37766049 PMCID: PMC10536471 DOI: 10.3390/s23187994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Adsorption of silver nanoparticles on polymers may affect the processes in which they participate, adjusting the analytical characteristics of methods for the quantitation of various substances. In the present study, a composite material based on silver triangular nanoplates (AgTNPs) and polyurethane foam was proposed for chemical analysis. The prospects of its application for the solid-phase/colorimetric determination of organic thiols were substantiated. It was found that aggregation of AgTNPs upon the action of thiols is manifested by a decrease in the AgTNPs' localized surface plasmon resonance band and its significant broadening. Spectral changes accompanying the process can be registered using household color-recording devices and even visually. Four thiols differing in their functional groups were tested. It was found that their limits of detection increase in the series cysteamine < 2-mercaptoethanol < cysteine = 3-mercaptopropionic acid and come to 50, 160, 500, and 500 nM, respectively. The applicability of the developed approach was demonstrated during the analysis of pharmaceuticals and food products.
Collapse
Affiliation(s)
- Aleksei Furletov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Apyari
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pavel Volkov
- Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals, National Research Center “Kurchatov Institute”, 107076 Moscow, Russia
| | | | | |
Collapse
|
3
|
Zhang Y, Feng Y, Rui X, Xu L, Qi L, Yang Z, Hu C, Liu P, Zhang H. Acoustic Source Localization in CFRP Composite Plate Based on Wave Velocity-Direction Function Fitting. SENSORS (BASEL, SWITZERLAND) 2023; 23:3052. [PMID: 36991763 PMCID: PMC10057154 DOI: 10.3390/s23063052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Composite materials are widely used, but they are often subjected to impacts from foreign objects, causing structural damage. To ensure the safety of use, it is necessary to locate the impact point. This paper investigates impact sensing and localization technology for composite plates and proposes a method of acoustic source localization for CFRP composite plates based on wave velocity-direction function fitting. This method divides the grid of composite plates, constructs the theoretical time difference matrix of the grid points, and compares it with the actual time difference to form an error matching matrix to localize the impact source. In this paper, finite element simulation combined with a lead-break experiment is used to explore the wave velocity-angle function relationship of Lamb waves in composite materials. The simulation experiment is used to verify the feasibility of the localization method, and the lead-break experimental system is built to locate the actual impact source. The results show that the acoustic emission time-difference approximation method can effectively solve the problem of impact source localization in composite structures, and the average localization error is 1.44 cm and the maximum localization error is 3.35 cm in 49 experimental points with good stability and accuracy.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Yu Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Xiaobo Rui
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Lixin Xu
- State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
| | - Lei Qi
- Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
| | - Zi Yang
- Department of Computer Science, Brown University, Providence, RI 02912, USA
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Peng Liu
- Tianjin Institute of Aerospace Mechanical and Electrical Equipment, Tianjin 300450, China
| | - Haijiang Zhang
- China Academy of Space Technology, Beijing 100094, China
| |
Collapse
|
4
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|