1
|
Sheng Y, He JH, Wang SJ, Xu DF, Zhang R, Bradley M, Sun YX. A signal amplification for Trp isomers electrochemical recognition based on PEDOT:PSS and CS/PAA multilayers. Talanta 2023; 265:124885. [PMID: 37421788 DOI: 10.1016/j.talanta.2023.124885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
In this work, enhanced tryptophan (Trp) isomers recognition was successfully demonstrated on (CS/PAA)3.5@PEDOT:PSS/GCE, a multilayer chiral sensor with good stability and reproducibility. The (CS/PAA)n multilayers chiral interface was first fabricated via alternating self-assembly of chiral chitosan (CS) and achiral polyacrylic acid (PAA). Conductive PEDOT:PSS was then compounded with (CS/PAA)n multilayers to obtain the chiral sensor for the electrochemical recognition of Trp isomers. The structure of the sensor and its chirality properties for Trp isomers were characterized by fourier transform infrared spectroscopy (FT-IR),scanning electron microscopy (SEM) and electrochemical methods. The SEM images showed uniform distribution of PEDOT:PSS in the multilayer films, which changed the internal structure of the (CS/PAA)3.5. Consequently, (CS/PAA)3.5@PEDOT:PSS multilayers rendered more chiral centers in addition to improved good conductivity, which significantly amplified the oxidation peak current ratio of D-Trp to L-Trp (ID/IL) up to 6.71 at 25 °C. In addition, a linear relationship was observed between the peak current and Trp enantiomer concentration in the range of 0.002-0.15 mM, and the detection limits of D-Trp and L-Trp were 0.33 and 0.67 μM, respectively. More importantly, the percentage of D-Trp in non-racemic Trp enantiomers mixture solutions were successfully determined on the chiral interface, showing its effectiveness and promising potential in practical applications.
Collapse
Affiliation(s)
- Yang Sheng
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213614, Jiangsu, PR China; National Experimental Demonstration Center for Materials Science and Engineering ChangzhouUniversity, Changzhou, 213164, PR China
| | - Jia-Hui He
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213614, Jiangsu, PR China; National Experimental Demonstration Center for Materials Science and Engineering ChangzhouUniversity, Changzhou, 213164, PR China
| | - Si-Jie Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213614, Jiangsu, PR China; National Experimental Demonstration Center for Materials Science and Engineering ChangzhouUniversity, Changzhou, 213164, PR China
| | - De-Feng Xu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, Jiangsu, PR China
| | - Rong Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213614, Jiangsu, PR China; National Experimental Demonstration Center for Materials Science and Engineering ChangzhouUniversity, Changzhou, 213164, PR China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH93JJ, UK
| | - Yi-Xin Sun
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213614, Jiangsu, PR China; National Experimental Demonstration Center for Materials Science and Engineering ChangzhouUniversity, Changzhou, 213164, PR China.
| |
Collapse
|
2
|
Study on Quality Control of Tenofovir Disoproxil Fumarate Enantiomers by High-Performance Liquid Chromatography–Mass Spectrometry. Chromatographia 2023. [DOI: 10.1007/s10337-023-04240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
AbstractThis study aims at developing a high-performance liquid chromatography–mass spectrometry (LC–MS) method to analyze tenofovir disoproxil fumarate (TDF) and its pharmaceutical preparations. Several cyclodextrin mobile-phase additives were applied to reversed-phase and normal-phase chromatography, and the effects of three chiral stationary phases on the TDF separation were investigated in this study. The R-type and S-type of TDF tablets were quantitatively analyzed in the single ion monitoring (SIM) scanning mode with a Unichiral CMD column. This method has been successfully applied to the separation and quantification of TDF and its isomers. The linear ranges of (R)-TDF and (S)-enantiomer were 1–20 and 0.2–16 μg/mL, respectively. The limit of detection for (R)-TDF and (S)-enantiomer was 0.0015 and 0.0012 μg/mL, respectively. (S)-enantiomer was not detected in the formulas from all the seven manufacturers, and the drug content of each took more than 98.5% of the labeled amount, which complies with the regulations. The method shows its advantages on high sensitivity, low detection limit, good practicability, and repeatability. The proposed method may provide a novel platform for separation of TDF enantiomers and quality control of TDF raw materials and preparations.
Collapse
|
3
|
Yang Y, Sun X, Reza Poopari M, Jian C, Zeng H, Tang T, Xu Y. Chirality Discrimination at Binary Organic|Water Interfaces Monitored by Interfacial Tension Measurements with Preliminary Comparison with Molecular Dynamics Simulations. Chemphyschem 2023; 24:e202200608. [PMID: 36173980 DOI: 10.1002/cphc.202200608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Chirality discrimination at a binary toluene (organic)/water(aqueous) interface between R- or S-Tol-BINAP (2,2'-Bis(di-p-tolylphosphino)-1,1'-binaphthyl) molecules and the water-soluble serine chiral specie is examined for the first time, using a combination of interfacial tension measurements and molecular dynamic simulations. Experimental interfacial measurements exhibit a clear chirality-controlled difference when a homochiral versus a heterochiral enantiomeric pairs are introduced at the interfaces. The related molecular dynamics simulations support the experimental results and provide further molecular insight of intermolecular interactions at the interfaces. The results indicate that interfacial tension measurements can capture the preferential interactions which exist between different pairs of enantiomers at the binary interfaces, opening up a new way for probing chirality discrimination at liquid-liquid interfaces.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Xiaoyu Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | | | - Cuiying Jian
- Department of Mechanical Engineering, York University, Toronto, Ontario, M3 J 1P3, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
4
|
Li H, Wang L, Yan S, Chen J, Zhang M, Zhao R, Niu X, Wang K. Fusiform-like metal-organic framework for enantioselective discrimination of tryptophan enantiomers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
The hybrids of perylene tetracarboxylic acid functionalized multi-walled carbon nanotubes and chitosan for electrochemical chiral sensing of tryptophan enantiomers. Bioelectrochemistry 2022; 146:108110. [DOI: 10.1016/j.bioelechem.2022.108110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022]
|
7
|
Zhao J, Xing P. Regulation of Circularly Polarized Luminescence in Multicomponent Supramolecular Coassemblies. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| |
Collapse
|