1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Zhou Z, Tian Y, Zou L, Liu Y, Zhang X, Huang X, Ren H, Li Z, Niu H, Liao H, Zhang X, Pan H, Rong S, Ma H. An electrochemical ratiometric immunosensor for the detection of NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39046279 DOI: 10.1039/d4ay01066c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Nuclear matrix protein 22 (NMP22) is one of the most important tumor markers of bladder cancer and is significantly elevated in the urine of bladder cancer patients. Therefore, in this work, a highly sensitive ratiometric electrochemical immunosensor was constructed to detect NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs composites. ZIF-8 had a large surface area and good adsorption ability. Multi-Walled Carbon Nanotubes (MWCNTs) can optimize the electrical conductivity of ZIF-8, so that the electrode surface of ferrocene (Fc) obtains a stable and strong electrochemical signal. In addition, AuPt-MB provided another strong detection signal methylene blue (MB) while immobilizing the secondary antibody (Ab2) through Au-N and Pt-N bonds. A ratiometric electrochemical sensor was formed based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB, which showed a great linear connection between IMB/IFc and the logarithmic concentration of NMP22 with a detection limit of 3.33 fg mL-1 (S/N = 3) under optimized specifications in the concentration interval of 0.01 pg mL-1 to 1000 ng mL-1. In addition, the ratiometric immunosensor showed good selectivity and stability.
Collapse
Affiliation(s)
- Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Yuting Tian
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
3
|
Zhang W, Li X, Ding X, Hua K, Sun A, Hu X, Nie Z, Zhang Y, Wang J, Li R, Liu S. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC Adv 2023; 13:10800-10817. [PMID: 37033424 PMCID: PMC10074235 DOI: 10.1039/d3ra00966a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023] Open
Abstract
Metal-organic framework composites have the advantages of large surface area, high porosity, strong catalytic efficiency and good stability, which provide a great possibility of finding excellent electrode materials for electrochemical sensors. However, MOF composites still face various challenges and difficulties, which limit their development and application. This paper reviews the application of MOF composites in electrochemical sensors, including MOF/carbon composites, MOF/metal nanoparticle composites, MOF/metal oxide composites and MOF/enzyme composites. In addition, the application challenges of MOF composites in electrochemical sensors are summarized. Finally, the application prospect for MOF composites is considered to promote the synthesis of more MOF composites with excellent properties.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Xiaoman Ding
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Kang Hua
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Aili Sun
- School of 3D Printing, Xinxiang University Xinxing 453003 China
| | - Xinxin Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Ziwei Nie
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Yongsheng Zhang
- China Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Xinxiang 453003 China +86-0373-3040933
| |
Collapse
|
4
|
Efficient direct electrocatalysis of nano-dodecahedron for the highly sensitive and selective detection of rutin. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
6
|
Li Y, Tang J, Lin Y, Li J, Yang Y, Zhao P, Fei J, Xie Y. Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAU-1/Acidified Carbon Nanotubes Composites. Molecules 2022; 27:molecules27227761. [PMID: 36431862 PMCID: PMC9695502 DOI: 10.3390/molecules27227761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Rutin, a natural flavonol glycoside, is widely present in plants and foods, such as black tea and wheat tea. The antioxidant and anti-inflammatory effects of flavonoids are well known. In this study, a new electrochemical rutin sensor was developed using multiwalled carbon nanotubes/aluminum-based metal-organic frameworks (MWCNT/CAU-1) (CAU-1, a type of Al-MOF) as the electrode modification material. The suspension of multiwalled carbon tubes was dropped on the surface of the GCE electrode to make MWCNT/GCEs, and CAU-1 was then attached to the electrode surface by electrodeposition. MWCNTs and CAU-1 were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Due to the synergistic effect of CAU-1 and MWCNT-COOH, the prepared sensor showed an ultrasensitive electrochemical response to rutin. Under optimized conditions, the sensor showed a linear relationship between 1.0 × 10-9~3.0 × 10-6 M with a detection limit of 6.7 × 10-10 M (S/N = 3). The sensor also showed satisfactory stability and accuracy in the detection of real samples.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jianxiong Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yueli Lin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pengcheng Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Correspondence: (J.F.); (Y.X.)
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
- Correspondence: (J.F.); (Y.X.)
| |
Collapse
|
7
|
Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022; 27:molecules27196603. [PMID: 36235140 PMCID: PMC9571638 DOI: 10.3390/molecules27196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation-π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L-1 to 220.0 μmol L-1 and the detection limit of 0.33 nmol L-1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.
Collapse
|
8
|
Şenocak A, Sanko V, Tümay SO, Orooji Y, Demirbas E, Yoon Y, Khataee A. Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti 3Al 0.5Cu 0.5C 2 MAX phase. Food Chem Toxicol 2022; 164:113016. [PMID: 35430329 DOI: 10.1016/j.fct.2022.113016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
MAX phases have attracted great attention due to unique features such as thermal and electrical conductivity, easy fabrication, heat resistant, and lightweight. In this study, an easy and green method was employed to successfully develop a Ti3Al0.5Cu0.5C2 MAX phase structure, and a Ti3Al0.5Cu0.5C2 based glassy carbon electrode (GCE) was applied for the electrochemical determination of rutin antioxidants in mandarin and kiwi samples. The developed Ti3Al0.5Cu0.5C2 MAX phase was characterized by different techniques such as X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to obtain information on the structural and morphological properties. Electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed for the determination of rutin using Ti3Al0.5Cu0.5C2/GCE. The GCE modified with Ti3Al0.5Cu0.5C2 demonstrated amplified electrochemical response (ca. 4.25 times) in comparison to the bare GCE towards rutin, and exhibited ultra-sensitivity and selectivity in the presence of other interfering antioxidants. Under the optimum conditions, good linearity in the range of 0.02-50.00 μmol L-1 was obtained for rutin analysis by the Ti3Al0.5Cu0.5C2-based sensor with a limit of detection (LOD, 3σ/K) as low as 0.015 μmol L-1. The fabricated Ti3Al0.5Cu0.5C2 MAX phase was applied to determine trace levels of rutin in mandarin and kiwi samples with validation by high-performance liquid chromatography (HPLC), thus highlighting its potential for the electrochemical determination of small molecules in the agricultural field.
Collapse
Affiliation(s)
- Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Turkey
| | - Vildan Sanko
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Turkey
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|