1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Ruan M, Zhang B, Wang J, Fan G, Lu X, Zhang J, Zhao W. A resorufin-based fluorescent probe for hydrazine detection and its application in environmental analysis and bioimaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6412-6416. [PMID: 37965731 DOI: 10.1039/d3ay01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hydrazine (N2H4) is an important industrial raw material that has been widely used in industrial production and agricultural interventions, but its widespread application also inevitably causes environmental pollution. In this study, based on resorufin, we constructed a novel "turn-on" fluorescent probe RFT for the selective detection of hydrazine under complex environmental conditions and in vivo. The probe RFT exhibited excellent stability and selectivity towards the detection of hydrazine with a low detection limit of 260 nM. In addition, RFT was successfully applied to the detection of hydrazine in environmental water samples and living cells. Most importantly, RFT could not only detect the exogenous hydrazine in zebrafish and mice, but also image and visualize the up-regulation of endogenous hydrazine induced by isoniazid in zebrafish.
Collapse
Affiliation(s)
- Minghao Ruan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China.
| | - Guanwen Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China.
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
3
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
4
|
Rasin P, Haribabu J, Malappuram KM, Manakkadan V, Palakkeezhillam VNV, Echeverria C, Sreekanth A. A “turn-on” fluorescent chemosensor for the meticulous detection of gallium (III) ion and its use in live cell imaging, logic gates and keypad locks. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Keerthana P, George A, Benny L, Varghese A. Biomass Derived Carbon Quantum Dots embedded PEDOT/CFP Electrode for The Electrochemical detection of Phloroglucinol. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
An active ESIPT based molecular sensor aided with sulfonate ester moiety to track the presence of H2S analyte in realistic samples and HeLa cells. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
H 2S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023; 28:molecules28031295. [PMID: 36770961 PMCID: PMC9919052 DOI: 10.3390/molecules28031295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Hydrogen sulfide (H2S) is an essential signaling gas within the cell, and its endogenous levels are correlated with various health diseases such as Alzheimer's disease, diabetes, Down's syndrome, and cardiovascular disease. Because it plays such diverse biological functions, being able to detect H2S quickly and accurately in vivo is an area of heightened scientific interest. Using probes that fluoresce in the near-infrared (NIR) region is an effective and convenient method of detecting H2S. This approach allows for compounds of high sensitivity and selectivity to be developed while minimizing cytotoxicity. Herein, we report a review on the synthesis, mechanisms, optical properties, and selected biomedical applications of H2S sensors.
Collapse
|
8
|
Shi GJ, Wang YD, Yu ZX, Zhang Q, Chen S, Xu LZ, Wang KP, Hu ZQ. The coumarin-pyrazole dye for detection of hydrogen sulfide in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121898. [PMID: 36150259 DOI: 10.1016/j.saa.2022.121898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent probes for H2S are often interfered by other thiols. In this work, a coumarin-pyrazole dye with 2,4-dinitrosulfonyl group was designed for the detection of H2S. The probe exhibits weak fluorescence in water due to the photo induced electron transfer (PET) by 2,4-dinitrosulfonyl. After the sulfonyl group is cleaved off by H2S, strong fluorescence appears. The probe can specifically detect H2S without being interfered by other biological thiols, and shows a wide applicable pH range, low detection and wide detection range. The excellent detection properties of the probe can also be used to detect endogenous and exogenous H2S in cells. In addition, the probes can be made into portable test paper for the detection of H2S in solutions and can detect H2S in different water samples.
Collapse
Affiliation(s)
- Guang-Jin Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue-Dong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen-Xing Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang-Zhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Shi J, Zhang D, Li M, Wang Y, Liu L, Wang T, Guo F, Wu X. A new fluorescent probe for hydrogen sulfide based on naphthalimide derivatives and its biological application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Man LL, Tong L, Gan LL, Li RY, Mu HR, Dong WK. A N 2O 2-tetradentate dioxime fluorescence probe for highly efficient sensing of S 2– and solution discoloration detection of H 2S gas. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2088758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li-Li Man
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Li Tong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Hao-Ran Mu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wen-Kui Dong
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
P K, Abbo H, Cherian AR, Titinchi S, Varghese A. An Efficient Inclusion Complex Based Fluorescent Sensor for Mercury (II) and its Application in Live-Cell Imaging. J Fluoresc 2022; 32:1109-1124. [PMID: 35305207 DOI: 10.1007/s10895-022-02931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of an inclusion complex between hydroxypropyl-β-cyclodextrin (H-CD) and 4-acetylphenyl-4-(((6-chlorobenzo[d]thiazol-2-yl)-imino)-methyl)-benzoate (L) was investigated by FT-IR, 1H-NMR, X-ray diffraction (XRD), FT-Raman, scanning electron microscope (SEM) techniques in the solid-state, absorption and emission spectroscopy in the liquid state and the virtual state as molecular docking technique. The binding properties of the inclusion complex (H-CD: L) with cations in deionized water was observed via absorbance and photoluminescence (PL) emission spectroscopy. The fluorescence probe (H-CD: L) inclusion complex (IC) was examined for several heavy metal cations, and identified that the PL emission wavelength of the complex displayed a continuous rise in the fluorescence intensity for Hg2+. A linearity range of 1 × 10-8 - 11 × 10-8 M and limit of detection value of 2.71 × 10-10 M was found to be achieved for the detection of Hg2+. This outcome proves that the inclusion complex H-CD: L would be a promising material for the development a solid-state fluorescence probe for detecting Hg2+. It also shows application in real sample analysis and cell imaging.
Collapse
Affiliation(s)
- Keerthana P
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Hanna Abbo
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa.,Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Anila Rose Cherian
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Salam Titinchi
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|