1
|
Inoque NIG, Abarza Muñoz RA. Electrochemistry of chloramphenicol on laser-induced graphene electrodes and its voltammetric determination in honey. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6793-6801. [PMID: 39248289 DOI: 10.1039/d4ay01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Laser scribing is a promising technology for the rapid and large-scale production of low-cost electrochemical sensors from diverse substrates. Polyimide has been the most popular so far because of its low cost, flexibility and capability of generating high-quality porous graphene films, known as laser-induced graphene (LIG). Herein we report the electrochemistry of chloramphenicol (CAP) on LIG electrodes and its determination in honey samples. LIG electrodes were fabricated by the photothermal conversion of sp3 carbon within the polymeric matrix into sp2 carbon using a CO2 laser cutter. The LIG electrode associated with differential pulse voltammetry (DPV) showed good linearity (R2 > 0.99) in the range from 10 to 160 μmol L-1 with a limit of detection of 1.0 μmol L-1 and good precision (RSD < 5%) for the electrochemical reduction of CAP species. Detection was possible free from the interference of other antibiotics, such as amoxicillin, tetracycline, sulfanilamide, and sulfamethoxazole. Spiked honey samples were analyzed by the standard-addition method and recovery values between 86 and 109% were obtained, which confirmed the absence of sample matrix effects. Therefore, the proposed sensor is an alternative, feasible, low-cost, and powerful analytical tool for the determination of CAP in honey.
Collapse
|
2
|
K J A, Reddy S, B L, Harish KN, N M Y, R P, S M. MoS 2_CNTs_aerogel-based PEDOT nanocomposite electrochemical sensor for simultaneous detection of chloramphenicol and furazolidone in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:595-610. [PMID: 39287337 DOI: 10.1080/03601234.2024.2399461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Toxic intermediates in food caused by chloramphenicol (CP) and furazolidone (FZ) have gained interest in research toward their detection. Hence, fast, reliable, and accurate detection of CP and FZ in food products is of utmost importance. Here, a novel molybdenum disulfide-connected carbon nanotube aerogel/poly (3,4-ethylenedioxythiophene) [MoS2/CNTs aerogel/PEDOT] nanocomposite materials are constructed and deposited on the pretreated carbon paste electrode (PCPE) by a facile eletropolymerization method. The characterization of MoS2/CNTs aerogel/PEDOT nanocomposite was analyzed by scanning electron microscopy (SEM), cyclic voltammetry, and differential pulse voltammetry. The modified MoS2/CNTs aerogel/PEDOT nanocomposite has improved sensing characteristics for detecting CP and FZ in PBS solution. For this work, we have studied various parameters like electrocatalytic activity, the effect of scan rates, pH variation studies, and concentration variation studies. Under optimum conditions, the modified electrode exhibited superior sensing ability compared to the bare and pretreated CPE. This improvement in electrocatalytic activity can be the higher conductivity, larger surface area, increased heterogeneous rate constant, and presence of more active sites in the MoS2/CNTs aerogel/PEDOT nanocomposite. The modified electrode demonstrated distinct electrochemical sensing toward the individual and simultaneous analysis of CP and FZ with a high sensitivity of 0.701 µA. µM-1 .cm-2 for CP and 0.787 µA. µM-1 .cm-2 for FZ and a low detection limit of 3.74 nM for CP and 3.83 nM for FZ with good reproducibility, repeatability, and interferences. Additionally, the prepared sensor effectively detects CP and FZ in food samples (honey and milk) with an acceptable recovery range and a relative standard deviation below 4%.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - K N Harish
- Department of Chemistry, B.M.S. College of Engineering, Bangalore, Karnataka, India
| | - Yathish N M
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Pavanashree R
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Madhumitha S
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| |
Collapse
|
3
|
Pereira JFS, Di-Oliveira M, Faria LV, Borges PHS, Nossol E, Gelamo RV, Richter EM, Lopes OF, Muñoz RAA. CO 2-plasma surface treatment of graphite sheet electrodes for detection of chloramphenicol, ciprofloxacin and sulphanilamide. Mikrochim Acta 2023; 190:379. [PMID: 37682352 DOI: 10.1007/s00604-023-05953-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Graphite sheet (GS) electrodes are flexible and versatile substrates for sensing electrochemical; however, their use has been limited to incorporate (bio)chemical modifiers. Herein, we demonstrated that a cold (low temperature) CO2 plasma treatment of GS electrodes provides a substantial improvement of the electrochemical activity of these electrodes due to the increased structural defects on the GS surface as revealed by Raman spectroscopy (ID/IG ratio), and scanning electron microscopy images. XPS analyses confirmed the formation of oxygenated functional groups at the GS surface after the plasma treatment that are intrinsically related to the substantial increase in the electron transfer coefficient (K0 values increased from 1.46 × 10-6 to 2.09 × 10-3 cm s-1) and with reduction of the resistance to charge transfer (from 129.8 to 0.251 kΩ). The improved electrochemical activity of CO2-GS electrodes was checked for the detection of emerging contaminant species, such as chloramphenicol (CHL), ciprofloxacin (CIP) and sulphanilamide (SUL) antibiotics, at around + 0.15, + 1.10 and + 0.85 V (versus Ag/AgCl), respectively, by square wave voltammetry. Limit of detection values in the submicromolar range were achieved for CHL (0.08 μmol L-1), CIP (0.01 μmol L-1) and SFL (0.11 μmol L-1), which enabled the sensor to be successfully applied to natural waters and urine samples (recovery values from 85 to 119%). The CO2-GS electrode is highly stable and inexpensive ($0.09 each sensor) and can be easily inserted in portable 3D printed cells for environmental on-site analyses.
Collapse
Affiliation(s)
- Jian F S Pereira
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Marina Di-Oliveira
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Lucas V Faria
- Institute of Chemistry, Universidade Federal Fluminense (UFF), Niterói, RJ, 24020-141, Brazil
| | - Pedro H S Borges
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Edson Nossol
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Rogério V Gelamo
- Institute of Technological and Exact Sciences, Federal University of Triângulo Mineiro (UFTM), Universidade Federal do Triângulo Mineiro, Uberaba, MG, 38064-200, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Osmando F Lopes
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38408-902, Brazil.
| |
Collapse
|
4
|
K J A, Reddy S, Acharya S, B L, Deepak K, Naveen CS, Harish KN, Ramakrishna S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3228-3249. [PMID: 35997206 DOI: 10.1039/d2ay00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To grow food for people, antibiotics were used, and these antibiotics can accumulate in the human body through food metabolism, which may have remarkably harmful effects on human health and safety. Therefore, low-cost sensors are needed for the detection of antibiotic residues in food samples. Recently, nanomaterial-based electrochemical sensors such as carbon nanoparticles, graphene nanoparticles, metal oxide nanoparticles, metal nanoparticles, and metal-organic nanostructures have been successfully used as sensing materials for the detection of chloramphenicol (CP) and furazolidone (FZ) antibiotics. However, additional efforts are still needed to fabricate effective multi-functional nanomaterial-based electrodes for the preparation of portable electrochemical sensor devices. The current review focuses on a quick introduction to CP and FZ antibiotics, followed by an outline of the current electrochemical analytical methods. In addition, we have discussed in-depth different nanoparticle supports for the electrochemical detection of CP and FZ in different matrices such as food, environmental, and biological samples. Finally, a summary of the current problems and future perspectives in this area are also highlighted.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Shubha Acharya
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - K Deepak
- Department of Physics, School of Applied Science, REVA University, Bangalore, 560064, India
| | - C S Naveen
- Department of Physics, School of Engineering, Presidency University, Bengaluru-560064, India
| | - K N Harish
- Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| |
Collapse
|
5
|
Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M, Jalil AA. Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food Chem Toxicol 2022; 165:113169. [PMID: 35618108 DOI: 10.1016/j.fct.2022.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
The sensing of food contaminants is essential to prevent their adverse health effects on the consumers. Electrochemical sensors are promising in the determination of electroactive analytes including food pollutants, biomolecules etc. Graphene nanomaterials offer many benefits as electrode material in a sensing device. To further improve the analytical performance, doped graphene or derivatives of graphene such as reduced graphene oxide and their nanocomposites were explored as electrode materials. Herein, the advancements in graphene and its derivatives-based electrochemical sensors for analysis of food pollutants were summarized. Determinations of both organic (food colourants, pesticides, drugs, etc.) and inorganic pollutants (metal cations and anions) were considered. The influencing factors including nature of electrode materials and food pollutants, pH, electroactive surface area etc., on the sensing performances of modified electrodes were highlighted. The results of pollutant detection in food samples by the graphene-based electrode have also been outlined. Lastly, conclusions and current challenges in effective real sample detection were presented.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
6
|
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022; 13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
Amphenicols are broad-spectrum antibiotics. Despite their benefits, they also present toxic effects and therefore their presence in animal-derived food was regulated. Various analytical methods have been reported for their trace analysis in food and environmental samples, as well as in the quality control of pharmaceuticals. Among these methods, the electrochemical ones are simpler, more rapid and cost-effective. The working electrode is the core of any electroanalytical method because the selectivity and sensitivity of the determination depend on its surface activity. Therefore, this review offers a comprehensive overview of the electrochemical sensors and methods along with their performance characteristics for chloramphenicol, thiamphenicol and florfenicol detection, with a focus on those reported in the last five years. Electrode modification procedures and analytical applications of the recently described devices for amphenicol electroanalysis in various matrices (pharmaceuticals, environmental, foods), together with the sample preparation methods were discussed. Therefore, the information and the concepts contained in this review can be a starting point for future new findings in the field of amphenicol electrochemical detection.
Collapse
|