1
|
Zhang S, Zhang Y, Ning Z, Duan M, Lin X, Duan N, Wang Z, Wu S. Design and application of microfluidics in aptamer SELEX and Aptasensors. Biotechnol Adv 2024; 77:108461. [PMID: 39374797 DOI: 10.1016/j.biotechadv.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the integration and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, the characteristics of various chips based on different driving forces are described firstly. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the SELEX and the aptasensors.
Collapse
Affiliation(s)
- Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Chen KY, Kachhadiya J, Muhtasim S, Cai S, Huang J, Andrews J. Underground Ink: Printed Electronics Enabling Electrochemical Sensing in Soil. MICROMACHINES 2024; 15:625. [PMID: 38793198 PMCID: PMC11123188 DOI: 10.3390/mi15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Improving agricultural production relies on the decisions and actions of farmers and land managers, highlighting the importance of efficient soil monitoring techniques for better resource management and reduced environmental impacts. Despite considerable advancements in soil sensors, their traditional bulky counterparts cause difficulty in widespread adoption and large-scale deployment. Printed electronics emerge as a promising technology, offering flexibility in device design, cost-effectiveness for mass production, and a compact footprint suitable for versatile deployment platforms. This review overviews how printed sensors are used in monitoring soil parameters through electrochemical sensing mechanisms, enabling direct measurement of nutrients, moisture content, pH value, and others. Notably, printed sensors address scalability and cost concerns in fabrication, making them suitable for deployment across large crop fields. Additionally, seamlessly integrating printed sensors with printed antenna units or traditional integrated circuits can facilitate comprehensive functionality for real-time data collection and communication. This real-time information empowers informed decision-making, optimizes resource management, and enhances crop yield. This review aims to provide a comprehensive overview of recent work related to printed electrochemical soil sensors, ultimately providing insight into future research directions that can enable widespread adoption of precision agriculture technologies.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Jeneel Kachhadiya
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Sharar Muhtasim
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
| | - Shuohao Cai
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Jingyi Huang
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA; (S.C.); (J.H.)
| | - Joseph Andrews
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.-Y.C.); (J.K.); (S.M.)
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Grazioli C, Dossi N, Cesaro F, Svigelj R, Toniolo R, Bontempelli G. A 3D printed Do-It-Yourself miniaturized device with a sensor responsive at six different wavelengths for reflectance measurements on paper-based supports. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|