1
|
Duan X, Wang Q, Wang Y, Liu X, Lu M, Li Z, Jiang X, Ji J. Preparation of Glutathione-Responsive Paclitaxel Prodrug Based on Endogenous Molecule of L-Glutathione Oxidized for Cancer Therapy. Pharmaceutics 2024; 16:1178. [PMID: 39339214 PMCID: PMC11435141 DOI: 10.3390/pharmaceutics16091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Using an endogenous carrier is the best method to address the biocompatibility of carriers in the drug delivery field. Herein, we prepared a glutathione-responsive paclitaxel prodrug micelle based on an endogenous molecule of L-glutathione oxidized (GSSG) for cancer therapy using one-pot synthesis. The carboxyl groups in L-glutathione oxidized were reacted with the hydroxyl group in paclitaxel (PTX) using the catalysts dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Then, the amino-polyethylene glycol monomethyl ether (mPEG-NH2) was conjugated with GSSG to prepare PTX-GSSG-PEG. The structure of PTX-GSSG-PEG was characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). The drug release kinetics of PTX within PTX-GSSG-PEG were quantified using ultraviolet spectroscopy (UV-Vis). The size of the PTX-GSSG-PEG micelles was 83 nm, as evaluated using dynamic light scattering (DLS), and their particle size remained stable in a pH 7.4 PBS for 7 days. Moreover, the micelles could responsively degrade and release PTX in a reduced glutathione environment. The drug loading of PTX in PTX-GSSG-PEG was 13%, as determined using NMR. Furthermore, the cumulative drug release rate of PTX from the micelles reached 72.1% in a reduced glutathione environment of 5 mg/mL at 120 h. Cell viability experiments demonstrated that the PTX-GSSG-PEG micelles could induce the apoptosis of MCF-7 cells. Additionally, cell uptake showed that the micelles could distribute to the cell nuclei within 7 h. To sum up, with this glutathione-responsive paclitaxel prodrug micelle based on the endogenous molecule GSSG, it may be possible to develop novel nanomedicines in the future.
Collapse
Affiliation(s)
- Xiao Duan
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China; (Q.W.); (X.L.); (Z.L.); (X.J.)
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi 046000, China
| | - Qiang Wang
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China; (Q.W.); (X.L.); (Z.L.); (X.J.)
| | - Yue Wang
- Central Lab Changzhi Medical College, Changzhi Medical College, Changzhi 046000, China; (Y.W.); (M.L.)
| | - Xinping Liu
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China; (Q.W.); (X.L.); (Z.L.); (X.J.)
| | - Manman Lu
- Central Lab Changzhi Medical College, Changzhi Medical College, Changzhi 046000, China; (Y.W.); (M.L.)
| | - Zhifang Li
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China; (Q.W.); (X.L.); (Z.L.); (X.J.)
| | - Xuelian Jiang
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China; (Q.W.); (X.L.); (Z.L.); (X.J.)
| | - Jingquan Ji
- Central Lab Changzhi Medical College, Changzhi Medical College, Changzhi 046000, China; (Y.W.); (M.L.)
| |
Collapse
|
2
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
3
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Wang Z, Zhong Y, He S, Liang R, Liao C, Zheng L, Zhao J. Application of the pH-Responsive PCL/PEG-Nar Nanofiber Membrane in the Treatment of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:859442. [PMID: 35573245 PMCID: PMC9092049 DOI: 10.3389/fbioe.2022.859442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Electrospinning technology is widely used in the field of drug delivery due to its advantages of convenience, high efficiency, and low cost. To investigate the therapeutic effect of naringenin (Nar) on osteoarthritis (OA), the pH-responsive system of the polycaprolactone/polyethylene glycol-naringenin (PCL/PEG-Nar) nanofiber membrane was designed and used as drug delivery systems (DDS) in the treatment of OA. The PEG-Nar conjugate was constructed via ester linkage between mPEG-COOH and the carboxyl group of naringenin, and the PCL/PEG-Nar nanofiber membrane was prepared by electrospinning technology. When placed in the weak acid OA microenvironment, the PCL/PEG-Nar nanofiber membrane can be cleverly “turned on” to continuously release Nar with anti-inflammatory effect to alleviate the severity of OA. In this study, the construction and the application of the pH-responsive PCL/PEG-Nar nanofiber membrane drug delivery platform would throw new light on OA treatment.
Collapse
Affiliation(s)
- Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Yanping Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Chuanan Liao
- Postdoctoral Mobile Station of Clinical Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Sahoo S, Ghosh P, Khan MEH, De P. Recent Progress in Macromolecular Design and Synthesis of Bile Acid‐Based Polymeric Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Md Ezaz Hasan Khan
- School of General Education College of the North Atlantic ‐ Qatar Arab League Street Doha 24449 Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| |
Collapse
|