1
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Ren J, Wu X. Recent Advances in Functional Hydrogel for Repair of Abdominal Wall Defects: A Review. Biomater Res 2024; 28:0031. [PMID: 38845842 PMCID: PMC11156463 DOI: 10.34133/bmr.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The abdominal wall plays a crucial role in safeguarding the internal organs of the body, serving as an essential protective barrier. Defects in the abdominal wall are common due to surgery, infection, or trauma. Complex defects have limited self-healing capacity and require external intervention. Traditional treatments have drawbacks, and biomaterials have not fully achieved the desired outcomes. Hydrogel has emerged as a promising strategy that is extensively studied and applied in promoting tissue regeneration by filling or repairing damaged tissue due to its unique properties. This review summarizes the five prominent properties and advances in using hydrogels to enhance the healing and repair of abdominal wall defects: (a) good biocompatibility with host tissues that reduces adverse reactions and immune responses while supporting cell adhesion migration proliferation; (b) tunable mechanical properties matching those of the abdominal wall that adapt to normal movement deformations while reducing tissue stress, thereby influencing regulating cell behavior tissue regeneration; (c) drug carriers continuously delivering drugs and bioactive molecules to sites optimizing healing processes enhancing tissue regeneration; (d) promotion of cell interactions by simulating hydrated extracellular matrix environments, providing physical support, space, and cues for cell migration, adhesion, and proliferation; (e) easy manipulation and application in surgical procedures, allowing precise placement and close adhesion to the defective abdominal wall, providing mechanical support. Additionally, the advances of hydrogels for repairing defects in the abdominal wall are also mentioned. Finally, an overview is provided on the current obstacles and constraints faced by hydrogels, along with potential prospects in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Guiwen Qu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Rui Ma
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| |
Collapse
|
2
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
3
|
Yu B, Wang W, Zhang Y, Sun Y, Li C, Liu Q, Zhen X, Jiang X, Wu W. Enhancing the tumor penetration of multiarm polymers by collagenase modification. Biomater Sci 2024; 12:2302-2311. [PMID: 38497169 DOI: 10.1039/d3bm02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tumor penetration is a critical determinant of the therapy efficacy of nanomedicines. However, the dense extracellular matrix (ECM) in tumors significantly hampers the deep penetration of nanomedicines, resulting in large drug-untouchable areas and unsatisfactory therapy efficacy. Herein, we synthesized a third-generation PAMAM-cored multiarm copolymer and modified the polymer with collagenase to enhance its tumor penetration. Each arm of the copolymer was a diblock copolymer of poly(glutamic acid)-b-poly(carboxybetaine), in which the polyglutamic acid block with abundant side groups was used to link the anticancer agent doxorubicin through the pH-sensitive acylhydrazone linkage, and the zwitterionic poly(carboxybetaine) block provided desired water solubility and anti-biofouling capability. The collagenase was conjugated to the ends of the arms via the thiol-maleimide reaction. We demonstrated that the polymer-bound collagenase could effectively catalyze the degradation of the collagen in the tumor ECM, and consequently augmented the tumor penetration and antitumor efficacy of the drug-loaded polymers.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Weijie Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yongmin Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Ying Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
4
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
5
|
Qiu Y, Fan M, Wang Y, Hu X, Chen J, Kamel S, Yang Y, Yang X, Liu H, Zhu Y, Wang Q. Sulfate-reducing bacteria loaded in hydrogel as a long-lasting H 2S factory for tumor therapy. J Control Release 2023; 360:647-659. [PMID: 37406817 DOI: 10.1016/j.jconrel.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The continuous supply of hydrogen sulfide (H2S) gas at high concentrations to tumors is considered a promising and safe strategy for tumor therapy. However, the absence of a durable and cost-effective H2S-producing donor hampers its extensive application. Sulfate-reducing bacteria (SRB) can serve as an excellent H2S factory due to their ability to metabolize sulfate into H2S. Herein, a novel injectable chondroitin sulfate (ChS) hydrogel loaded with SRB (SRB@ChS Gel) is proposed to sustainably produce H2S in tumor tissues to overcome the limitations of current H2S gas therapy. In vitro, the ChS Gel not only supports the growth of encapsulated SRB, but also supplies a sulfate source to the SRB to produce high concentrations of H2S for at least 7 days, resulting in mitochondrial damage and immunogenic cell death. Once injected into tumor tissue, the SRB@ChS Gel can constantly produce H2S for >5 days, significantly inhibiting tumor growth. Furthermore, such treatment activates systemic anti-tumor immune responses, suppresses the growth of distant and recurrent tumors, as well as lung metastases, meanwhile with negligible side effects. Therefore, the injectable SRB@ChS Gel, as a safe and long-term, self-sustained H2S-generating factory, provides a promising strategy for anti-tumor therapy.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiqian Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiuwen Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiawen Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Center for Nanomedicine, Wuhan 430074, China
| | - Hongfang Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanhong Zhu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Center for Nanomedicine, Wuhan 430074, China.
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Center for Nanomedicine, Wuhan 430074, China.
| |
Collapse
|
6
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
7
|
Song YT, Dong L, Hu JG, Liu PC, Jiang YL, Zhou L, Wang M, Tan J, Li YX, Zhang QY, Zou CY, Zhang XZ, Zhao LM, Nie R, Zhang Y, Li-Ling J, Xie HQ. Application of genipin-crosslinked small intestine submucosa and urine-derived stem cells for the prevention of intrauterine adhesion in a rat model. COMPOSITES PART B: ENGINEERING 2023; 250:110461. [DOI: 10.1016/j.compositesb.2022.110461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
8
|
Injectable decellularized cartilage matrix hydrogel encapsulating urine-derived stem cells for immunomodulatory and cartilage defect regeneration. NPJ Regen Med 2022; 7:75. [PMID: 36550127 PMCID: PMC9780205 DOI: 10.1038/s41536-022-00269-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of complex cartilage defects has remained a great challenge for tissue engineering due to the lack of stem cells and chronic inflammation within the joint. In this study, we have developed an injectable pig cartilage-derived decellularized extracellular matrix (dECM) hydrogels for the repair of cartilage defects, which has shown sound biocompatibility and immunomodulatory capacity both in vitro and in vivo. The dECM hydrogels can enhance the chondrogenic differentiation of human urine-derived stem cells (USCs). As shown by in vitro experiment, the USCs in the dECM hydrogels have survived, proliferated, and produced a mass of cartilage-specific extracellular matrix containing collagen II and aggrecan. And the USCs-laden dECM hydrogels have shown the capacity to promote the secretion of extracellular matrix, modulate the immune response and promote cartilage regeneration in the rat model for cartilage defect.
Collapse
|
9
|
Tan J, Zhang QY, Song YT, Huang K, Jiang YL, Chen J, Wang R, Zou CY, Li QJ, Qin BQ, Sheng N, Nie R, Feng ZY, Yang DZ, Yi WH, Xie HQ. Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective. COMPOSITES PART B: ENGINEERING 2022; 243:110149. [DOI: 10.1016/j.compositesb.2022.110149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|