1
|
Larijani G, Poostchi M, Faridghiasi F, Pal Singh Chauhan N, Rajaeih S, Amini N, Simorgh S. Electrospun PCL/Alginate/Nanoclay Nerve Conduit with Olfactory Ectomesenchymal Stem Cells for Nerve Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:7522-7534. [PMID: 39415452 DOI: 10.1021/acsabm.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Biocompatible and biodegradable nerve growth conduits (NGCs) provide a promising alternative to conventional nerve grafting for peripheral nerve regeneration. Incorporating nanoclay (NC) has been shown to increase the hydrophilicity and flexibility of polymeric scaffolds. In the present study, poly caprolactone-alginate (PCL-ALG) conduits with varying percentages of NC (0.1%, 0.2%, and 0.5%) were fabricated using the electrospinning technique. The conduit containing 0.5% NC showed a greater increase in elongation (33%) and porosity, reaching 95% with the lowest contact angle (10°). For in vitro, human olfactory ectomesenchymal stem cells (OE-MSCs) were used as a favorable choice for neuronal differentiation owing to the origin from the neural crest. The viability and proliferation of OE-MSCs were maintained after 5 days on scaffolds with 0.5% NC, as confirmed by the MTT assay, cell adhesion analysis, and live/dead staining. Furthermore, the impact of 0.5% PCL-ALG-NC on the paracrine activity of OE-MSCs was studied for a period of 7 days. Our results indicated that human OE-MSCs, when cocultured with PC12 cells on NGC, have the capability to release nerve growth factor levels of up to 1392.83 pg/mL. In summary, the electrospun PCL-ALG conduit containing an optimal NC dosage (0.5%) and seeded with human OE-MSCs shows promising outcomes as NGC scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maryam Poostchi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran 3177983634, Iran
| | - Farzaneh Faridghiasi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| | - Shahin Rajaeih
- ENT and Head and Neck Research Center and Department, the Five Senses Health, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
2
|
Yadav P, Shah R, Roy A, Jani S, Chatterjee K, Saini DK. Cellular Senescence Program is Sensitive to Physical Differences in Polymeric Tissue Scaffolds. ACS MATERIALS AU 2024; 4:35-44. [PMID: 38221924 PMCID: PMC10786134 DOI: 10.1021/acsmaterialsau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/16/2024]
Abstract
A typical cellular senescence program involves exposing cells to DNA-damaging agents such as ionization radiation or chemotherapeutic drugs, which cause multipronged changes, including increased cell size and volume, the onset of enhanced oxidative stress, and inflammation. In the present study, we examined if the senescence onset decision is sensitive to the design, porosity, and architecture of the substrate. To address this, we generated a library of polymeric scaffolds widely used in tissue engineering of varied stiffness, architecture, and porosity. Using irradiated A549 lung cancer cells, we examined the differences between cellular responses in these 3D scaffold systems and observed that senescence onset is equally diminished. When compared to the two-dimensional (2D) culture formats, there were profound changes in cell size and senescence induction in three-dimensional (3D) scaffolds. We further establish that these observed differences in the senescence state can be attributed to the altered cell spreading and cellular interactions on these substrates. This study elucidates the role of scaffold architecture in the cellular senescence program.
Collapse
Affiliation(s)
- Parul Yadav
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
| | - Rahul Shah
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Anindo Roy
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Sibani Jani
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman
Avenue, Bangalore, India 560012
| | - Deepak Kumar Saini
- Department
of Bioengineering, Indian Institute of Science, C.V Raman Avenue, Bangalore, India 560012
- Department
of Developmental Biology and Genetics, C.V Raman Avenue, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
3
|
Pele KG, Amaveda H, Mora M, Marcuello C, Lostao A, Alamán-Díez P, Pérez-Huertas S, Ángeles Pérez M, García-Aznar JM, García-Gareta E. Hydrocolloids of Egg White and Gelatin as a Platform for Hydrogel-Based Tissue Engineering. Gels 2023; 9:505. [PMID: 37367175 DOI: 10.3390/gels9060505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Innovative materials are needed to produce scaffolds for various tissue engineering and regenerative medicine (TERM) applications, including tissue models. Materials derived from natural sources that offer low production costs, easy availability, and high bioactivity are highly preferred. Chicken egg white (EW) is an overlooked protein-based material. Whilst its combination with the biopolymer gelatin has been investigated in the food technology industry, mixed hydrocolloids of EW and gelatin have not been reported in TERM. This paper investigates these hydrocolloids as a suitable platform for hydrogel-based tissue engineering, including 2D coating films, miniaturized 3D hydrogels in microfluidic devices, and 3D hydrogel scaffolds. Rheological assessment of the hydrocolloid solutions suggested that temperature and EW concentration can be used to fine-tune the viscosity of the ensuing gels. Fabricated thin 2D hydrocolloid films presented globular nano-topography and in vitro cell work showed that the mixed hydrocolloids had increased cell growth compared with EW films. Results showed that hydrocolloids of EW and gelatin can be used for creating a 3D hydrogel environment for cell studies inside microfluidic devices. Finally, 3D hydrogel scaffolds were fabricated by sequential temperature-dependent gelation followed by chemical cross-linking of the polymeric network of the hydrogel for added mechanical strength and stability. These 3D hydrogel scaffolds displayed pores, lamellae, globular nano-topography, tunable mechanical properties, high affinity for water, and cell proliferation and penetration properties. In conclusion, the large range of properties and characteristics of these materials provide a strong potential for a large variety of TERM applications, including cancer models, organoid growth, compatibility with bioprinting, or implantable devices.
Collapse
Affiliation(s)
- Karinna Georgiana Pele
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Hippolyte Amaveda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Mario Mora
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Fundación ARAID, 50018 Zaragoza, Aragon, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Salvador Pérez-Huertas
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Andalusia, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London NW3 2PF, UK
| |
Collapse
|
4
|
Novel hybrid composites based on double-decker silsesquioxanes functionalized by methacrylate derivatives and polyvinyl alcohol as potential materials utilized in biomedical applications. BIOMATERIALS ADVANCES 2023; 146:213290. [PMID: 36682203 DOI: 10.1016/j.bioadv.2023.213290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The use of diverse biomaterials for regenerative medicine is constantly evolving. Therefore, looking for easy-to-scale-up materials in terms of preparation, less complex composition, and featuring structural and chemical stability seems justified. In this work, we report the preparation of double-decker silsesquioxane-based (DDSQ-based) composites, which, according to our best knowledge, have never been used as biomaterials. A family of methacrylate-substituted DDSQs was obtained starting from the previously reported hydroxyalkyl double-decker silsesquioxanes. In the resulting hybrids, methacrylate groups are attached to each other's lateral silicon atoms of DDSQ in trans positions, providing an excellent geometry for forming thin layers. In contrast to pure organic methacrylates, the covalent bonding of methacrylate derivatives to inorganic silsesquioxane core improves mechanics, cell adhesion, and migration properties. Furthermore, to increase the hydrophilicity of the resulting DDSQ-based hybrids, polyvinyl alcohol (PVA) was added. The entire system forms an easy-to-obtain two-component (DDSQ-PVA) composite, which was subjected without any upgrading additives to biological tests later in the research. The resulting biomaterials fulfill the requirements for potential medical applications. Human fibroblasts growing on prepared hybrid composites are characterized by proper spindle-shaped morphology, proliferation, and activation status similar to control conditions (cells cultured on PVA), as well as increased adhesion and migration abilities. The obtained results suggest that the prepared biomaterials may be used in regenerative medicine in the future.
Collapse
|
5
|
Alamán‐Díez P, García‐Gareta E, Arruebo M, Pérez MÁ. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A 2023; 111:88-105. [PMID: 36205241 PMCID: PMC9828068 DOI: 10.1002/jbm.a.37448] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán‐Díez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| | - Elena García‐Gareta
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
| | - Manuel Arruebo
- Aragón Institute of Nanoscience and Materials (INMA), Consejo Superior de Investigaciones Científicas (CSIC)University of ZaragozaZaragozaSpain,Department of Chemical EngineeringUniversity of ZaragozaZaragozaSpain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| |
Collapse
|
6
|
Barik A, Kirtania MD. In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|