1
|
Geyik G, Güncüm E, Işıklan N. Design and development of pH-responsive alginate-based nanogel carriers for etoposide delivery. Int J Biol Macromol 2023; 250:126242. [PMID: 37562484 DOI: 10.1016/j.ijbiomac.2023.126242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Recently, pH-responsive nanogels are playing progressively important roles in cancer treatment. The present study focuses on designing and developing pH-responsive alginate-based nanogels to achieve a controlled release of etoposide (Et) while enhancing its hydrophilicity. Alginate (ALG) is grafted with 2-hydroxypropyl methacrylamide (HPMA) through a microwave-supported method, and the chemical structure of the graft copolymer (ALG-g-PHPMA) was verified by 1H/13C NMR and FTIR techniques. The ALG-g-PHPMA and anticancer drug-loaded ALG-g-PHPMA@Et nanogels were obtained using an emulsion method, and their structures were characterized through FTIR, TG/DSC, AFM/TEM, BET, and DLS analyses. The ALG-g-PHPMA nanogels demonstrated a good drug encapsulation efficiency (79.60 %), displaying a pH-dependent release profile and an in vitro accelerated release of Et compared to the ALG nanogels. Thermal and BET analyses revealed enhanced stability, surface area, and porosity volume of the alginate nanogels. The grafting of PHPMA chains onto alginate altered the surface topology of the ALG nanogels, resulting in lower surface roughness. Furthermore, cytotoxicity tests showed the high biocompatibility of the ALG-g-PHPMA copolymer and its nanogels. The ALG-g-PHPMA@Et nanogels exhibited a higher anticancer effect on lung cancer (H1299) cells than free etoposide. These results suggest that the ALG-g-PHPMA nanogels can be applied as a pH-dependent nanoplatform for delivering anticancer drugs.
Collapse
Affiliation(s)
- Gülcan Geyik
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey; Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey
| | - Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey.
| |
Collapse
|
2
|
Phan H, Cavanagh R, Jacob P, Destouches D, Vacherot F, Brugnoli B, Howdle S, Taresco V, Couturaud B. Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly. Polymers (Basel) 2023; 15:3070. [PMID: 37514459 PMCID: PMC10383388 DOI: 10.3390/polym15143070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes.
Collapse
Affiliation(s)
- Hien Phan
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Robert Cavanagh
- School of Medicine, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Philippa Jacob
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | - Benedetta Brugnoli
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steve Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|