1
|
Campanero-Rhodes MA, Martí S, Hernández-Ortiz N, Cubero M, Ereño-Orbea J, Ardá A, Jiménez-Barbero J, Ardanuy C, Solís D. Insights into the recognition of hypermucoviscous Klebsiella pneumoniae clinical isolates by innate immune lectins of the Siglec and galectin families. Front Immunol 2024; 15:1436039. [PMID: 39148735 PMCID: PMC11324429 DOI: 10.3389/fimmu.2024.1436039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Klebsiella pneumoniae is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, K. pneumoniae variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the K. pneumoniae surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part. Various capsular and O-chain structures have been described. Of note, production of a thick capsule is frequently observed in HMV variants. Here we examined the surface sugar epitopes of a collection of HMV and non-HMV K. pneumoniae clinical isolates and their recognition by several Siglecs and galectins, two lectin families of the innate immune system, using bacteria microarrays as main tool. No significant differences among isolates in sialic acid content or recognition by Siglecs were observed. In contrast, analysis of the binding of model lectins with diverse carbohydrate-binding specificities revealed striking differences in the recognition by galactose- and mannose-specific lectins, which correlated with the binding or lack of binding of galectins and pointed to the O-chain as the plausible ligand. Fluorescence microscopy and microarray analyses of galectin-9 binding to entire cells and outer membranes of two representative HMV isolates supported the bacteria microarray results. In addition, Western blot analysis of the binding of galectin-9 to outer membranes unveiled protein bands recognized by this galectin, and fingerprint analysis of these bands identified several proteins containing potential O-glycosylation sites, thus broadening the spectrum of possible galectin ligands on the K. pneumoniae surface. Moreover, Siglecs and galectins apparently target different structures on K. pneumoniae surfaces, thereby behaving as non-redundant complementary tools of the innate immune system.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Noelia Hernández-Ortiz
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - June Ereño-Orbea
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana Ardá
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology University of the Basque Country, EHU/UPV, Leioa, Spain
| | - Carmen Ardanuy
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Dolores Solís
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Roy M, Mbous Nguimbus L, Badiane PY, Goguen-Couture V, Degrandmaison J, Parent JL, Brunet MA, Roux S. Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions. Life Sci Alliance 2024; 7:e202302348. [PMID: 38395460 PMCID: PMC10895193 DOI: 10.26508/lsa.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.
Collapse
Affiliation(s)
- Michèle Roy
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Léopold Mbous Nguimbus
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Papa Yaya Badiane
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Victor Goguen-Couture
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jade Degrandmaison
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Luc Parent
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Marie A Brunet
- Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Ruda A, Aytenfisu AH, Angles d’Ortoli T, MacKerell AD, Widmalm G. Glycosidic α-linked mannopyranose disaccharides: an NMR spectroscopy and molecular dynamics simulation study employing additive and Drude polarizable force fields. Phys Chem Chem Phys 2023; 25:3042-3060. [PMID: 36607620 PMCID: PMC9890503 DOI: 10.1039/d2cp05203b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
D-Mannose is a structural component in N-linked glycoproteins from viruses and mammals as well as in polysaccharides from fungi and bacteria. Structural components often consist of D-Manp residues joined via α-(1→2)-, α-(1→3)-, α-(1→4)- or α-(1→6)-linkages. As models for these oligo- and polysaccharides, a series of mannose-containing disaccharides have been investigated with respect to conformation and dynamics. Translational diffusion NMR experiments were performed to deduce rotational correlation times for the molecules, 1D 1H,1H-NOESY and 1D 1H,1H-T-ROESY NMR experiments were carried out to obtain inter-residue proton-proton distances and one-dimensional long-range and 2D J-HMBC experiments were acquired to gain information about conformationally dependent heteronuclear coupling constants across glycosidic linkages. To attain further spectroscopic data, the doubly 13C-isotope labeled α-D-[1,2-13C2]Manp-(1→4)-α-D-Manp-OMe was synthesized thereby facilitating conformational analysis based on 13C,13C coupling constants as interpreted by Karplus-type relationships. Molecular dynamics simulations were carried out for the disaccharides with explicit water as solvent using the additive CHARMM36 and Drude polarizable force fields for carbohydrates, where the latter showed broader population distributions. Both simulations sampled conformational space in such a way that inter-glycosidic proton-proton distances were very well described whereas in some cases deviations were observed between calculated conformationally dependent NMR scalar coupling constants and those determined from experiment, with closely similar root-mean-square differences for the two force fields. However, analyses of dipole moments and radial distribution functions with water of the hydroxyl groups indicate differences in the underlying physical forces dictating the wider conformational sampling with the Drude polarizable versus additive C36 force field and indicate the improved utility of the Drude polarizable model in investigating complex carbohydrates.
Collapse
Affiliation(s)
- Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Asaminew H. Aytenfisu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Thibault Angles d’Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| |
Collapse
|
4
|
Lete MG, Franconetti A, Bertuzzi S, Delgado S, Azkargorta M, Elortza F, Millet O, Jiménez-Osés G, Arda A, Jiménez-Barbero J. NMR Investigation of Protein-Carbohydrate Interactions: The Recognition of Glycans by Galectins Engineered with Fluorotryptophan Residues. Chemistry 2023; 29:e202202208. [PMID: 36343278 PMCID: PMC10107428 DOI: 10.1002/chem.202202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Fluorine (19 F) incorporation into glycan-binding proteins (lectins) has been achieved and exploited to monitor the binding to carbohydrate ligands by nuclear magnetic resonance (NMR) spectroscopy. Galectins are a family of lectins that bind carbohydrates, generally with weak affinities, through a combination of intermolecular interactions including a key CH-π stacking involving a conserved tryptophan residue. Herein, Galectin-3 (Gal3) and Galectin-8 (Gal8) with one and two carbohydrate recognition domains (CRDs), respectively, were selected. Gal3 contains one Trp, whereas Gal8 contains three, one at each binding site and a third one not involved in sugar binding; these were substituted by the corresponding F-Trp analogues. The presence of fluorine did not significantly modify the affinity for glycan binding, which was in slow exchange on the 19 F NMR chemical-shift timescale, even for weak ligands, and allowed binding events taking place at two different binding sites within the same lectin to be individualized.
Collapse
Affiliation(s)
- Marta G Lete
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Antonio Franconetti
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Sara Bertuzzi
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Sandra Delgado
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Félix Elortza
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain
| | - Ana Arda
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
5
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
6
|
Oligosaccharide Presentation Modulates the Molecular Recognition of Glycolipids by Galectins on Membrane Surfaces. Pharmaceuticals (Basel) 2022; 15:ph15020145. [PMID: 35215258 PMCID: PMC8878398 DOI: 10.3390/ph15020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Galectins are a family of glycan binding proteins that stand out for the wide range of biological phenomena in which they are involved. Most galectin functions are associated with their glycan binding capacities, which are generally well characterized at the oligosaccharide level, but not at the glycoprotein or glycolipid level. Glycolipids form the part of cell membranes where they can act as galectin cellular receptors. In this scenario, glycan presentation as well as the membrane chemical and structural features are expected to have a strong impact in these molecular association processes. Herein, liposomes were used as membrane mimicking scaffolds for the presentation of glycosphingolipids (GSLs) and to investigate their interaction with Galectin-3 and the N-domain of Galectin-8 (Gal8N). The binding towards GM3 and GM1 and their non-silaylated GSLs was compared to the binding to the free glycans, devoid of lipid. The analysis was carried out using a combination of NMR methods, membrane perturbation studies, and molecular modeling. Our results showed a different tendency of the two galectins in their binding capacities towards the glycans, depending on whether they were free oligosaccharides or as part of GSL inserted into a lipid bilayer, highlighting the significance of GSL glycan presentation on membranes in lectin binding.
Collapse
|
7
|
Girardi B, Manna M, Van Klaveren S, Tomašič T, Jakopin Ž, Leffler H, Nilsson UJ, Ricklin D, Mravljak J, Schwardt O, Anderluh M. Selective Monovalent Galectin-8 Ligands Based on 3-Lactoylgalactoside. ChemMedChem 2021; 17:e202100514. [PMID: 34613662 DOI: 10.1002/cmdc.202100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Galectin-8 has gained attention as a potential new pharmacological target for the treatment of various diseases, including cancer, inflammation, and disorders associated with bone mass reduction. To that end, new molecular probes are needed in order to better understand its role and its functions. Herein we aimed to improve the affinity and target selectivity of a recently published galectin-8 ligand, 3-O-[1-carboxyethyl]-β-d-galactopyranoside, by introducing modifications at positions 1 and 3 of the galactose. Affinity data measured by fluorescence polarization show that the most potent compound reached a KD of 12 μM. Furthermore, reasonable selectivity versus other galectins was achieved, making the highlighted compound a promising lead for the development of new selective and potent ligands for galectin-8 as molecular probes to examine the protein's role in cell-based and in vivo studies.
Collapse
Affiliation(s)
- Benedetta Girardi
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Martina Manna
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia
| | - Sjors Van Klaveren
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia.,Centre for Analysis and Synthesis - Department of Chemistry, Lund University, Box 124-221 00, Lund, Sweden
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia
| | - Hakon Leffler
- Centre for Analysis and Synthesis - Department of Chemistry, Lund University, Box 124-221 00, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis - Department of Chemistry, Lund University, Box 124-221 00, Lund, Sweden
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marko Anderluh
- Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta, 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
8
|
Selective
13
C‐Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Moure MJ, Gimeno A, Delgado S, Diercks T, Boons G, Jiménez‐Barbero J, Ardá A. Selective 13 C-Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angew Chem Int Ed Engl 2021; 60:18777-18782. [PMID: 34128568 PMCID: PMC8456918 DOI: 10.1002/anie.202106056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Indexed: 12/12/2022]
Abstract
A combined chemo-enzymatic synthesis/NMR-based methodology is presented to identify, in unambiguous manner, the distinctive binding epitope within repeating sugar oligomers when binding to protein receptors. The concept is based on the incorporation of 13 C-labels at specific monosaccharide units, selected within a repeating glycan oligomeric structure. No new chemical tags are added, and thus the chemical entity remains the same, while the presence of the 13 C-labeled monosaccharide breaks the NMR chemical shift degeneracy that occurs in the non-labeled compound and allows the unique identification of the different components of the oligomer. The approach is demonstrated by a proof-of-concept study dealing with the interaction of a polylactosamine hexasaccharide with five different galectins that display distinct preferences for these entities.
Collapse
Affiliation(s)
- María J. Moure
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Ana Gimeno
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Sandra Delgado
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Tammo Diercks
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Geert‐Jan Boons
- Chemical Biology and Drug DiscoveryUtrecht UniversityUtrechtThe Netherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGeorgiaUSA
- Department of ChemistryUniversity of GeorgiaAthensGeorgiaUSA
| | - Jesús Jiménez‐Barbero
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
- Department of Organic & Inorganic ChemistryUniversity of the Basque CountryUPV/EHUSpain
| | - Ana Ardá
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| |
Collapse
|