1
|
Kanojia A, Roy G, Madhubala R, Muthuswami R. Interplay between DOT1L and HDAC1 regulates Leishmania donovani infection in human THP-1 cells. Acta Trop 2024; 258:107352. [PMID: 39103111 DOI: 10.1016/j.actatropica.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Leishmania donovani, a protozoan parasite, causes visceral leishmaniasis. The parasite modifies the global gene expressions of the host genome, facilitating its survival within the host. Thus, the host epigenetic modulators play important roles in host-pathogen interaction and host epigenetic modification in response to infection. Previously, we had reported that the host epigenetic modulator, histone deacetylase 1 (HDAC1) expression was upregulated on Leishmania donovani infection. This upregulation led to the repression of host defensin genes in response to the infection. In this paper, we have investigated the interplay between the host DOT1L, a histone methyltransferase, and HDAC1 in response to Leishmania donovani infection. We show that the expression of DOT1L is upregulated both at transcript and protein level following infection leading to increase in H3K79me, H3K79me2, and H3K79me3 levels. ChIP experiments showed that DOT1L regulated the expression of HDAC1. Downregulation of DOT1L using siRNA resulted in decreased expression of HDAC1 and increased transcription of defensin genes and thereby, lower parasite load. In turn, HDAC1 regulates the expression of DOT1L on Leishmania donovani infection as downregulation of HDAC1 using siRNA led to reduced expression of DOT1L. Thus, during Leishmania donovani infection, an interplay between DOT1L and HDAC1 regulates the expression of these two histone modifiers leading to downregulation of defensin gene expression.
Collapse
Affiliation(s)
- Akanksha Kanojia
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, 110067, India
| | - Gargi Roy
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, 110067, India
| | - Rentala Madhubala
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, 110067, India
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, 110067, India.
| |
Collapse
|
2
|
Barbachowska M, Harivel T, Nicchi S, Danckaert A, Ghazarian M, Chiaravalli J, Buchrieser C, Rolando M, Arimondo PB. High Content Screening Assay of Inhibitors of the Legionella Pneumophila Histone Methyltransferase RomA in Infected Cells. Chembiochem 2024:e202400293. [PMID: 39252664 DOI: 10.1002/cbic.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Resistance to anti-microbial agents is a world-wide health threat. Thus, there is an urgent need for new treatments. An alternative approach to disarm pathogens consists in developing drugs targeting epigenetic modifiers. Bacterial pathogens can manipulate epigenetic regulatory systems of the host to bypass defences to proliferate and survive. One example is Legionella pneumophila, a Gram-negative intracellular pathogen that targets host chromatin with a specific, secreted bacterial SET-domain methyltransferase named RomA. This histone methyltransferase specifically methylates H3 K14 during infection and is responsible for changing the host epigenetic landscape upon L. pneumophila infection. To inhibit RomA activity during infection, we developed a reliable high-content imaging screening assay, which we used to screen an in-house chemical library developed to inhibit DNA and histone methyltransferases. This assay was optimised using monocytic leukemic THP-1 cells differentiated into macrophages infected with L. pneumophila in a 96- or 384-well plate format using the Opera Phenix (Perkin Elmer) confocal microscope, combined with Columbus software for automated image acquisition and analysis. H3 K14 methylation was followed in infected, single cells and cytotoxicity was assessed in parallel. A first pilot screening of 477 compounds identified a potential starting point for inhibitors of H3 K14 methylation.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
- Université Paris Cité, Ecole Doctorale MTCI, Paris, 75006, France
- Pasteur-Paris University (PPU), Oxford International Doctoral program, Institut Pasteur, F-75015, Paris, France
| | - Thomas Harivel
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Sonia Nicchi
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne Danckaert
- UtechS PBI - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Marine Ghazarian
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility - C2RT, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Carmen Buchrieser
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Monica Rolando
- Biology of Intracellular Bacteria, Department of Microbiology, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, F-75015, Paris, France
| |
Collapse
|
3
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|