1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Sutton GD, Jiang C, Liu G, Teets TS. Ratiometric oxygen sensors of cyclometalated iridium(III) with enhanced quantum yields and variable dynamic ranges. Dalton Trans 2023; 52:3195-3202. [PMID: 36794766 DOI: 10.1039/d3dt00350g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Four luminescent ratiometric oxygen sensors, pairing phosphorescent cyclometalated iridium with coumarin or BODIPY fluorophores, are presented here. These compounds realize three key improvements over our previous designs, namely higher phosphorescence quantum yields, the ability to access intermediate dynamic ranges better suited for typical atmospheric O2 levels, and the possibility of using visible excitation instead of UV. These ratiometric sensors are accessed via very simple, 1-step syntheses involving direct reaction of the chloro-bridged cyclometalated iridium dimer with the pyridyl-substituted fluorophore. They have phosphorescent quantum yields up to 29% with short to intermediate phosphoresence lifetimes ranging from 1.7 to 5.3 μs in three of the sensors, with the fourth having a long lifetime of 440 μs that is very responsive to oxygen. In one case, visible excitation of 430 nm is used to provide dual emission instead of UV excitation.
Collapse
Affiliation(s)
- Gregory D Sutton
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Gardenia Liu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
3
|
Soundaram Jeevarathinam A, Saleem W, Martin N, Hu C, McShane MJ. NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring. BIOSENSORS 2023; 13:bios13010141. [PMID: 36671976 PMCID: PMC9855917 DOI: 10.3390/bios13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/09/2023]
Abstract
A highly sensitive, biocompatible, and scalable phosphorescent oxygen sensor formulation is designed and evaluated for use in continuous metabolite sensors for biological systems. Ethyl cellulose (EC) and polystyrene (PS) nanoparticles (NPs) stabilized with Pluronic F68 (PF 68), Polydimethylsiloxane-b-polyethyleneglycol methyl ether (PDMS-PEG), sodium dodecylsulfate (SDS), and cetyltimethylammonium bromide (CTAB) were prepared and studied. The resulting NPs with eight different surfactant−polymer matrix combinations were evaluated for physical properties, oxygen sensitivity, effect of changes in dispersion matrix, and cytotoxicity. The EC NPs exhibited a narrower size distribution and 40% higher sensitivity than PS, with Stern−Volmer constants (Ksv) 0.041−0.052 µM−1 for EC, compared to 0.029−0.034 µM−1 for PS. Notably, ethyl cellulose NPs protected with PF68 were selected as the preferred formulation, as they were not cytotoxic towards 3T3 fibroblasts and exhibited a wide phosphorescence lifetime response of >211.1 µs over 258−0 µM and ~100 µs over 2.58−0 µM oxygen, with a limit of detection (LoD) of oxygen in aqueous phase of 0.0016 µM. The EC-PF68 NPs were then efficiently encapsulated in alginate microparticles along with glucose oxidase (GOx) and catalase (CAT) to form phosphorescent nanoparticles-in-microparticle (NIMs) glucose sensing microdomains. The fabricated glucose sensors showed a sensitivity of 0.40 µs dL mg−1 with a dynamic phosphorescence lifetime range of 46.6−197.1 µs over 0−150 mg dL−1 glucose, with a glucose LoD of 18.3 mg dL−1 and maximum distinguishable concentration of 111.1 mg dL−1. Similarly, lactate sensors were prepared with NIMs microdomains containing lactate oxidase (LOx) and found to have a detection range of 0−14 mg dL−1 with LoD of 1.8 mg dL−1 and maximum concentration of 13.7 mg dL−1 with lactate sensitivity of 10.7 µs dL mg−1. Owing to its versatility, the proposed NIMs-based design can be extended to a wide range of metabolites and different oxygen-sensing dyes with different excitation wavelengths based on specific application.
Collapse
Affiliation(s)
| | - Waqas Saleem
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nya Martin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Connie Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Materials Science and Engineering, Texas A&M University, College Station, TX 77845, USA
- Correspondence: (M.J.M.)
| |
Collapse
|
4
|
Wu Y, Sutton GD, Halamicek MDS, Xing X, Bao J, Teets TS. Cyclometalated iridium-coumarin ratiometric oxygen sensors: improved signal resolution and tunable dynamic ranges. Chem Sci 2022; 13:8804-8812. [PMID: 35975154 PMCID: PMC9350586 DOI: 10.1039/d2sc02909j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022] Open
Abstract
In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.
Collapse
Affiliation(s)
- Yanyu Wu
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Gregory D Sutton
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Michael D S Halamicek
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Xinxin Xing
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Jiming Bao
- University of Houston, Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH) Houston TX 77204 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
5
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
6
|
Judge N, Pavlovic D, Moldenhauer E, Clarke P, Brannigan R, Heise A. Influence of the block copolypeptide surfactant structure on the size of polypeptide nanoparticles obtained by mini emulsion polymerisation. Polym Chem 2022. [DOI: 10.1039/d2py00331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypetide nanoparticles obtained by miniemulsion polymerisation of amino acid N-carboxyanhydrides (NCA) are a novel class of tuneable bio-derived functional nano materials for potential applications in nutraceutics, agriculture, and medicine. This...
Collapse
|
7
|
Saccomano SC, Cash KJ. A near-infrared optical nanosensor for measuring aerobic respiration in microbial systems. Analyst 2021; 147:120-129. [PMID: 34854441 DOI: 10.1039/d1an01855h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a ratiometric oxygen-sensitive nanosensor and demonstrated application in monitoring metabolic oxygen consumption in microbial samples over time. Based on a near-infrared (NIR) emitting oxygen-quenched luminophore, platinum(II) octaethylporphine ketone (PtOEPK), along with a stable dioctadecyl dicarbocyanine reference dye (DiD), this nanosensor system provides an advantageous approach for overcoming imaging issues in biological systems, such as autofluorescence and optical scattering in the visible wavelength region. The dyes are encapsulated within a polymer-based nanoparticle matrix to maintain them at a constant ratio in biological samples, precluding the need for complex synthetic approaches. With this constant ratio of the two dyes, the nanosensor response can be measured as a ratio of their two signals, accounting for nanosensor concentration artifacts in measurements. The nanosensors are reversible, which enabled us to temporally monitor systems in which dissolved oxygen concentrations both increase and decrease. These sensors were applied for the monitoring of oxygen in samples of Saccharomyces cerevisiae (brewing yeast) in a 96-well optical fluorescence plate reader format over 60 h. By mixing the nanosensors directly into the sample well with the yeast, we were able to dynamically track metabolic activity changes over time due to varying cell concentration and exposure to an antimicrobial agent. This system could be a potential platform for high-throughput screening of various species or variants of microbes with unknown metabolic rates in response to external stimuli (antimicrobials, metabolites, etc.).
Collapse
Affiliation(s)
- Samuel C Saccomano
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA.
| | - Kevin J Cash
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA. .,Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|