1
|
Zhou H, Lau VM, Love JA. Colorimetric Detection of Sulfur Mustard with 4-( p-Nitrobenzyl)pyridine and Its Derivatives. Anal Chem 2024; 96:8406-8415. [PMID: 38728057 DOI: 10.1021/acs.analchem.3c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, we present a simple, highly sensitive, and selective colorimetric method for detecting sulfur mustard (SM) and its simulants. This method relies on a nucleophilic substitution reaction between derivatives of 4-(p-nitrobenzyl)pyridine (NBP) and SM and subsequent treatment with an external base, resulting in a visible response. This reaction exhibits an impressively low detection threshold by the naked eye, as low as 10 ppm at room temperature. In contrast to the conventional use of NBP for detecting other alkylating agents, such as nitrogen mustard, our approach eliminates the need for prolonged heating or intricate extraction processes. Both computational and experimental investigations underscore the significance of water within our detection medium as it stabilizes crucial episulfonium cation intermediates. Furthermore, we demonstrate the practical applicability of this sensor by incorporating it onto cellulose and silica surfaces, which may provide guidance for the design and development of solid-state SM detectors.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vivian M Lau
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta T1A 8K6, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Mondal S, Krishna B, Roy S, Dey N. Discerning toxic nerve gas agents via a distinguishable 'turn-on' fluorescence response: multi-stimuli responsive quinoline derivatives in action. Analyst 2024; 149:3097-3107. [PMID: 38713504 DOI: 10.1039/d4an00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We have successfully synthesized quinoline derivatives that exhibit easy scalability and responsiveness to multiple stimuli. These derivatives are capable of forming self-assembled nanoscopic aggregates in an aqueous medium. Consequently, when placed in an aqueous environment, we observe dual fluorescence originating from both twisted intramolecular charge transfer and aggregation-induced emission. The introduction of nerve gas agents, such as diethyl chlorophosphate (DClP) or diethylcyanophosphate (DCNP), to the probe molecules facilitates the charge-transfer process, resulting in a red-shift in absorption maxima. Notably, when operating in fluorescence mode, both of these analytes produce distinct output signals, making them easily distinguishable. DCNP generates a blue fluorescence, while the addition of DClP yields cyan fluorescence. Our mechanistic investigation reveals that the initial step involves phosphorylation of the quinoline nitrogen end. However, in the case of DCNP, the released cyanide ion subsequently attacks the carbonyl carbon centre, forming a cyanohydrin derivative. The response to these target analytes appears to be influenced by the nucleophilicity of the quinoline nitrogen end and the electrophilic nature of the carbonyl unit.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
| | - Bandarupalli Krishna
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
- Adama India Pvt. Ltd, Genome Valley, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
| |
Collapse
|
3
|
Maiti A, Ahamed S, Tohora N, Roy D, Ray T, Sahana S, Roy MN. A Pyrene Coupled Azaine-linkage Chromo-fluorogenic Probe for Specific Detection of Sarin Gas Stimulant, Diethylchlorophosphate. J Fluoresc 2024:10.1007/s10895-024-03681-1. [PMID: 38795209 DOI: 10.1007/s10895-024-03681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/20/2024] [Indexed: 05/27/2024]
Abstract
Owing to the extreme toxicity and easy synthesis protocol of G-series nerve agents, developing an efficient sensor for selective detection is necessary. Although various traditional methods are utilized to identify these nerve agents, chromo-fluorogenic probes have gained attractive attention from the scientific communities. In the present contribution, we have introduced a new symmetrical aza-substituted chromo-fluorogenic sensor, BPH, for specific detection of sarin gas, one of the fatal G-series nerve agents surrogate, diethylchlorophosphate (DCP). BPH shows a noticeable naked eye colorimetric change from pale yellow to light pink in the presence of DCP, displaying highly intense bright greenish cyan color photoluminosity under a 365 nm UV lamp,which is also manifested from the color chromaticity diagram. A BPH-staining paper stirps-based test kit experiment has been demonstrated for the on-site detection of nerve agent mimics. A more attractive and efficient application of BPH as a sarin gas vapor phase sensor mimics DCP in solid and solution phases. The BPH-based chromo-fluorogenic sensor shows excellent selectivity toward DCP with a detection and quantification limit in the µM range. This report invokes a new way for the researchers to detect DCP employing a simple chromo-fluorogenic sensor, which could be prepared by a time-saving, straightforward, handy protocol from the cost-effective starting materials.
Collapse
Affiliation(s)
- Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tanusree Ray
- Department of Chemistry, Siliguri College, Siliguri, India
| | - Sudip Sahana
- Department of Chemistry, Saldiha College, Bankura, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
4
|
Chourasia J, Tohora N, Sultana T, Mahato M, Maiti A, Ahamed S, Das SK. A pyrene-based chromo-fluorogenic probe for specific detection of sarin gas mimic, diethylchlorophosphate. LUMINESCENCE 2024; 39:e4731. [PMID: 38566570 DOI: 10.1002/bio.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Nerve agents are becoming serious issues for the healthy and sustainable environment of modern civilization. Therefore, its detection and degradation are of paramount importance to the scientific community. In the present contribution, we have introduced a chromo-fluorogenic pyrene-based probe, (E)-2-methoxy-3-(pyren-1-ylimino)-3,8a-dihydro-2H-chromen-4-ol (PMCO) to detect sarin stimulant diethylchlorophosphate (DCP) in solution and gaseous phases. On inserting DCP in PMCO solution, a visual colorimetric change from yellow to clear colourless in daylight and highly intensified blue fluorescence was observed instantly under a 365 nm portable UV lamp light. PMCO has outstanding selectivity and high sensitivity with a limit of detection of 1.32 μM in dimethyl sulfoxide (DMSO) medium and 77.5 nM in 20% H2O-DMSO. A handy strained paper strip-based experiment was demonstrated to recognize DCP in a mixture of similar toxic analytes. A dip-stick experiment was performed to identify DCP vapour, and may be used as an effective photonic tool. We also demonstrated real sample analysis utilizing different DCP-spiked water samples and validating DCP detection even in various types of soils such as sand, field, and mud. Therefore, this present study provides an effective chemosensor for instant and on-site detection of toxic nerve agents in dangerous circumstances.
Collapse
Affiliation(s)
- Jyoti Chourasia
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
5
|
Tohora N, Ahamed S, Mahato M, Sultana T, Chourasia J, Maiti A, Das SK. Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach. Photochem Photobiol Sci 2024; 23:763-780. [PMID: 38519812 DOI: 10.1007/s43630-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Nerve agents are the most notorious substances, which can be fatal to an individual because they block the activity of acetylcholinesterase. Fighting against unpredictable terrorist assaults and wars requires the simple and quick detection of chemical warfare agent vapor. In the present contribution, we have introduced a rhodamine-based chemosensor, BDHA, for the detection of nerve gas-mimicking agents diethylchlorophosphate (DCP) and diethylcyanophosphonate (DCNP) and mustard gas-mimicking agent 2-chloroethyl ethyl sulfide (CEES), both in the liquid and vapor phase. Probe BDHA provides the ability for detection by the naked eye in terms of colorimetric and fluorometric changes. It has been revealed that the interaction between nerve agents mimics and probe BDHA facilitates spirolactam ring opening due to the phosphorylation process. Thus, the highly fluorescent and colored species developed while probe BDHA is colorless and non-fluorescent due to the intramolecular spirolactam ring. Moreover, probe BDHA can effectively recognize DCP, DCNP, and CEES in the µM range despite many toxic analytes and could be identified based on the response times and quantum yield values. Inexpensive, easily carried paper strips-based test kits were developed for the quick, on-location solid and vapor phase detection of these mustard gas imitating agents (CEES) and nerve gas mimicking agents (DCP and DCNP) without needing expensive equipment or skilled personnel. More remarkably, the test strips' color and fluorescence can be rapidly restored, exposing them to triethyl amine (TEA) for cyclic use, suggesting a potential application in the real-time identification of chemical warfare agents. To accomplish the on-location application of BDHA, we have experimented with soil samples to find traces of DCP. Therefore, the chromo-fluorogenic probe BDHA is a promising, instantaneous, and on-the-spot monitoring tool for the selective detection of DCP, DCNP, and CEES in the presence of others.
Collapse
Affiliation(s)
- Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Jyoti Chourasia
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
6
|
Mahato M, Sultana T, Maiti A, Ahamed S, Tohora N, Ghanta S, Das SK. Highly selective and sensitive chromogenic recognition of sarin gas mimicking diethylchlorophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1371-1382. [PMID: 38349024 DOI: 10.1039/d3ay02306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The high-level toxic effects of organophosphate (OP) nerve agents severely threaten national security and public health. Generating trustworthy, accurate methods for quickly identifying these poisonous chemicals is urgently necessary. In this study, we have presented an azine-based colorimetric sensor (HBD) for the highly sensitive and selective identification of poisonous sarin gas surrogate diethylchlorophosphate (DCP). Our introduced sensor shows a purple color in contact with DCP, which is fully reversible upon the addition of triethylamine (TEA). The detection limit of our sensor for the toxic nerve agent mimic DCP is in the μM range. We have fabricated a test kit to verify the capability of HBD for on-the-spot identification of DCP to execute its practical use. To prove that HBD is an effective chemosensor, dip-stick investigation was conducted to detect DCP in the vaporous stage in the presence of different OPs, inorganic phosphates (IPs), and many other deadly analytes. A cellphone-based display method was also undertaken for on-the-spot recognition and measurement of DCP in isolated regions.
Collapse
Affiliation(s)
- Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Barjala, Jirania, Tripura 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
7
|
Sultana T, Mahato M, Tohora N, Ahamed S, Maiti A, Ghanta S, Das SK. A benzoxazole-triphenylamine conjugated fluorogenic probe for specific detection of sarin gas mimic diethylchlorophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:759-771. [PMID: 38227020 DOI: 10.1039/d3ay01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this study, an excellent chromo-fluorogenic PMPA probe, (E)-4-(((4-(benzoxazole-2-yl)phenyl)imino)methyl)-N,N-diphenylamine, is introduced for the detection of sarin gas mimic diethyl chlorophosphate (DCP) in solution and gaseous phases. On adding DCP into PMPA solution in a pure DMSO and water-DMSO (4 : 1) medium, it exhibits a hypsochromic shift from yellow to colorless and from no fluorescence to highly intense blue-violet photoluminescence via the formation of a phosphorylated PMPA-DCP product due to the inhibition of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) mechanism. The sensor could detect DCP in the presence of several other notorious guest analytes with a detection limit in the μM range. Moreover, to accomplish the on-spot detection of DCP and explore the practical applicability of the probe, a paper strip-based test kit, "dip-stick" method, and, more interestingly, a real sample analysis was demonstrated in spiked soil samples.
Collapse
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Barjala, Jirania, Agartala, Tripura 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
8
|
Hu X, Ke Y, Ye H, Zhu B, Rodrigues J, Sheng R. Toward public security monitoring: A perspective of optical molecular probes for phosgene and mustard gas detection. DYES AND PIGMENTS 2023; 216:111379. [DOI: https:/doi.org/10.1016/j.dyepig.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
9
|
Tohora N, Mahato M, Sultana T, Ahamed S, Das SK. A benzoxazole-based turn-on fluorosensor for rapid and sensitive detection of sarin surrogate, diethylchlorophosphate. Anal Chim Acta 2023; 1255:341111. [PMID: 37032052 DOI: 10.1016/j.aca.2023.341111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
A benzoxazole-based fluorosensor (IMP) has been synthesized and employed for the selective and sensitive detection of sarin surrogate, diethylchlorophosphate (DCP) in solution, and gas phase, respectively. Remarkable turn-on fluorescence is observed due to the introduction of DCP in the solution of IMP because of inhibition of the intramolecular charge transfer process and disruption of the excited state intramolecular proton transfer (ESIPT) mechanism. The synthesized IMP-based fluorescence sensor exhibits excellent selectivity, high sensitivity, and a wide linear range of 15-60 μM with a detection limit of 44 nM. Low-intense to highly intensified visible violet color could be seen by the naked eye under a portable 365 nm UV lamp due to the addition of DCP in the solution of IMP. IMP-stained paper strips-based test kit experiment has been demonstrated to detect traces of DCP in stockpiles of related analytes. A dip-stick experiment for the detection of DCP vapor has also been demonstrated. The effectiveness of IMP in detecting DCP established that it might be used as a signal tool for real sample analysis.
Collapse
|
10
|
Zhang S, Yang B, Yuan B, Zhou C, Zhang M, Zhao Y, Ye P, Li L, Li H. Dual-State Fluorescent Probe for Ultrafast and Sensitive Detection of Nerve Agent Simulants in Solution and Vapor. ACS Sens 2023; 8:1220-1229. [PMID: 36795893 DOI: 10.1021/acssensors.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The development of fluorescent probes for detecting nerve agents has been the main concern focus of research because of their lethal toxicity for humans. Herein, a probe (PQSP) based on the quinoxalinone unit and the styrene pyridine group was synthesized and could visually detect a sarin simulant diethyl chlorophosphate (DCP) with excellent sensing properties in solution and solid states. Interestingly, PQSP showed an apparent intramolecular charge-transfer process by catalytic protonation after reacting with DCP in methanol, accompanied with the aggregation recombination effect. The sensing process was also verified by nuclear magnetic resonance spectra, scanning electron microscopy, and theoretical calculations. In addition, the papered test strips of loading probe PQSP exhibited an ultrafast response time within 3 s and high sensitivity with a limit of detection of 3 ppb for the detection of DCP vapor. Therefore, this research provides a designed strategy for developing the probes with dual-state emission fluorescence in solution and solid states for detecting DCP sensitively and rapidly, which can be fabricated as chemosensors to visually detect nerve agents in practice.
Collapse
Affiliation(s)
- Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Bo Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Bo Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Min Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Pingwei Ye
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| |
Collapse
|
11
|
Luo YJ, Ye QC, Xie TJ, Tian LL, Yan Y, Lei Z, Wang DM, Huang CZ, Li YF, Zhen SJ. Electrostatic assemblies of molecularly imprinted polymers on the surface of electrospun nanofiber membranes for the point-of-care detection of thiodiglycol, a sulfur mustard poisoning metabolic marker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1500-1505. [PMID: 36916642 DOI: 10.1039/d3ay00185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, molecularly imprinted polymers (MIPs) were assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofiber membranes for the point-of-care testing (POCT) of thiodiglycol (TDG), a sulfur mustard poisoning metabolic marker, using concentrated gold nanoparticles (AuNPs) as the signal reporting units. The MIPs/PEI/PVA nanofiber membranes could capture TDG specifically through the recognition interaction between MIPs and TDG. Then, AuNPs were adsorbed onto the MIPs/PEI/PVA nanofiber membranes through the Au-S interaction between TDG and AuNPs to produce a visible red color. In order to improve the sensitivity, the silver-enhanced solutions were used to deepen the color of the nanofiber membranes and the software Image J was used to read the gray value as the signal response for subsequent analysis. There was a good linear relationship between the color change of the MIPs/PEI/PVA nanofiber membranes and the TDG concentration from 0.1 ng mL-1 to 1.0 μg mL-1, and the limit of detection was 38 pg mL-1. This method was applied for the selective detection of TDG in urine, showing great potential for the clinical diagnosis of mustard gas poisoning.
Collapse
Affiliation(s)
- Yu Jie Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Qi Chao Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Tian Jin Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Li Li Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yuan Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhan Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Dong Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
12
|
Ahamed S, Mahato M, Tohora N, Sultana T, Sahoo R, Ghanta S, Das SK. A PET and ESIPT-communicated ratiometric, turn-on chromo-fluorogenic sensor for rapid and sensitive detection of sarin gas mimic, diethylchlorophosphate. Talanta 2023; 258:124448. [PMID: 36940571 DOI: 10.1016/j.talanta.2023.124448] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Fast and precise identification of toxic G-series nerve agents in the solution and vapor phase is urgently needed to save human beings from unwanted wars and terrorist attacks, which is challenging to execute practically. In this article, we have designed and synthesized a sensitive and selective phthalimide-based chromo-fluorogenic sensor, DHAI, by a simple condensation process that shows ratiometric and turns on chromo-fluorogenic behavior towards Sarin gas mimic diethylchlorophosphate (DCP) in liquid and vapor phases, respectively. A colorimetric change, from yellow to colorless, is observed in the DHAI solution due to the introduction of DCP in daylight. A remarkable cyan color photoluminescence enhancement is noticed in the presence of DCP in the DHAI solution, which is observable to the naked under a portable 365 nm UV lamp. The mechanistic aspects of the detection of DCP by employing DHAI have been revealed by time-resolved photoluminescence decay analysis and 1H NMR titration investigation. Our probe DHAI exhibits linear photoluminescence enhancement from 0 to 500 μM with a detection limit of nanomolar range from non-aqueous to semi-aqueous media. For practical utility, a DHAI-stained test kit employing Whatman-41 filter paper has been fabricated and used as a portable and displayable photonic device for on-site detection of Sarin gas surrogate, DCP. Also, a dip-stick experiment has been demonstrated to identify the vapor of Sarin gas mimics DCP colorimetrically and fluorometrically. The concentrations of DCP in various water samples have been evaluated with the help of a standard fluorescence curve for real sample analysis.
Collapse
Affiliation(s)
- Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
13
|
Chen Q, Liu J, Liu S, Zhang J, He L, Liu R, Jiang H, Han X, Zhang K. Visual and Rapid Detection of Nerve Agent Mimics in Gas and Solution Phase by a Simple Fluorescent Probe. Anal Chem 2023; 95:4390-4394. [PMID: 36802493 DOI: 10.1021/acs.analchem.2c04891] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Chemical nerve agents are highly toxic organophosphorus compounds that are easy to obtain and can be utilized by terrorists to threaten homeland security and human safety. Those organophosphorus nerve agents contain nucleophilic ability that can react with acetylcholinesterase leading to muscular paralysis and human death. Therefore, there is great importance to explore a reliable and simple method to detect chemical nerve agents. Herein, the o-phenylenediamine-linked dansyl chloride as a colorimetric and fluorescent probe has been prepared to detect specific chemical nerve agent stimulants in the solution and vapor phase. The o-phenylenediamine unit serves as a detection site that can react with diethyl chlorophosphate (DCP) in a rapid response within 2 min. A satisfied relationship line was obtained between fluorescent intensity and the concentration of DCP in the range of 0-90 μM. In the optimized conditions, we conducted the fluorescent titration to measure the limits of detection (0.082 μM) with the fluorescent enhancement up to 18-fold. Fluorescence titration and NMR studies were also conducted to explore the detection mechanism, indicating that the formation of phosphate ester causes the intensity of fluorescent change during the PET process. Finally, probe 1 coated with the paper test is utilized to detect DCP vapor and solution by the naked eye. We expect that this probe may give some admiration to design the small molecule organic probe and applied in the selectivity detection of chemical nerve agents.
Collapse
Affiliation(s)
- Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jiaxu Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Renyong Liu
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, Anhui, China
| | - Hui Jiang
- Beijing Institute of Pharmaceutical Chemistry, State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
14
|
Sultana T, Mahato M, Tohora N, Ahamed S, Pramanik P, Ghanta S, Kumar Das S. A Phthalimide-based Turn on Fluorosensor for Selective and Rapid Detection of G-Series Nerve Agent’s Mimics. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Du X, Gong Y, Ren Y, Fu L, Duan R, Zhang Y, Zhang Y, Zhao J, Che Y. Development of Binary Coassemblies for Sensitively and Selectively Detecting Gaseous Sarin. Anal Chem 2022; 94:16418-16426. [DOI: 10.1021/acs.analchem.2c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaoming Du
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Ren
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyang Fu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibin Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Mahato M, Ahamed S, Tohora N, Sultana T, Ghanta S, Das SK. A Coumarin151 Derived Ratiomteric and Turn on Chemosensor for Rapid Detection of Sarin Surrogate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Zhang Q, Yang Y, Xia J, Zhang Y, Liu S, Yuan Z. Array-based chemical warfare agent discrimination via organophosphorus-H 2O 2 reaction-regulated chemiluminescence. RSC Adv 2022; 12:19246-19252. [PMID: 35865595 PMCID: PMC9247805 DOI: 10.1039/d2ra02420a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
It has been a challenge to achieve rapid, simple, and effective discrimination of organophosphorus nerve agents (typical chemical warfare agents) due to the similar chemical properties of the targets such as sarin, soman, cyclosarin and VX. In this study, we propose a chemiluminescence sensor array that can effectively discriminate organophosphorus nerve agents by organophosphorus-H2O2 reaction, which produces peroxyphosphonate intermediate and regulates the chemiluminescence intensity. A simple chemiluminescence sensor array based on different chemiluminescence characteristics of the four organophosphorus nerve agents in the luminol–H2O2 system and layered double hydroxide–luminol–H2O2 system has been constructed. Four agents can be well distinguished at a concentration of 1.0 mg L−1 when linear discriminant analyses and hierarchical cluster analyses are smartly combined. The high accuracy (100%) evaluation of 20 blind samples demonstrates the practicability of this proposed chemiluminescence sensor array. A chemical warfare agent sensor array based on organophosphorus-H2O2 reaction-regulated chemiluminescence is proposed.![]()
Collapse
Affiliation(s)
- Qiaoli Zhang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Yingying Zhang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
20
|
Alnoman RB, Al-Qahtani SD, Bayazeed A, Munshi AM, Alsoliemy A, Alqarni SA, El-Metwaly NM. Cellulose Acetate-Cellulose Nanowhisker Nanocomposite Immobilized with a DCDHF-Hydrazone Chromophore toward a Smart Test Strip for Colorimetric Detection of Diethyl Chlorophosphate as a Nerve Agent Mimic. ACS OMEGA 2022; 7:5595-5604. [PMID: 35187374 PMCID: PMC8851614 DOI: 10.1021/acsomega.1c07198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 06/13/2023]
Abstract
Exposure to nerve agents, which are usually colorless and odorless gases, may cause organ failure, paralysis, or even quick death. Diethyl chlorophosphate (DCP) has been recognized as one of the most well-known chemical warfare nerve agent mimics. In the current study, we introduce a simple strategy for the development of a portable and reversible nanocomposite-based microporous strip for naked-eye detection of DCP within a few seconds. A dicyanomethylenedihydrofuran hydrazone (DCDHF-H) chromophore was synthesized by an easy azo-coupling reaction and encapsulated in situ during the preparation of cellulose acetate/cellulose nanowhisker/hydrazone (CA-CNW-H) nanocomposites. These CA-CNW-H nanocomposites displayed a bathochromic shift in the absorption intensity of about 142 nm from 438 to 580 nm with the increase of the DCP concentration. The present CA-CNW-H sensor strip displayed a detection limit for DCP ranging from 25 to 200 ppm. The color change of CA-CNW-H from yellow to purple due to exposure to DCP was detected by CIE Lab analysis. The morphology, fibrous crystallinity, thermal stability, and mechanical properties of the prepared CA-CNW-H sensor strips were investigated.
Collapse
Affiliation(s)
- Rua B. Alnoman
- Department
of Chemistry, College of Science, Taibah
University, P.O. Box 344, Medina 43253, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Abrar Bayazeed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Alaa M. Munshi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amerah Alsoliemy
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Sara A. Alqarni
- Department
of Chemistry, College of Science, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
| |
Collapse
|
21
|
Zeng L, Chen T, Zhu B, Koo S, Tang Y, Lin W, James TD, Kim JS. A molecular recognition platform for the simultaneous sensing of diverse chemical weapons. Chem Sci 2022; 13:4523-4532. [PMID: 35656136 PMCID: PMC9020178 DOI: 10.1039/d2sc00299j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Chemical warfare agents (CWAs) such as phosgene and nerve agents pose serious threats to our lives and public security, but no tools can simultaneously screen multiple CWAs in seconds. Here, we rationally designed a robust sensing platform based on 8-cyclohexanyldiamino-BODIPY (BODIPY-DCH) to monitor diverse CWAs in different emission channels. Trans-cyclohexanyldiamine as the reactive site provides optimal geometry and high reactivity, allowing trans-BODIPY-DCH to detect CWAs with a quick response and high sensitivity, while cis-BODIPY-DCH has much weaker reactivity to CWAs due to intramolecular H-bonding. Upon reaction with phosgene, trans-BODIPY-DCH was rapidly converted to imidazolone BODIPY (<3 s), triggering green fluorescence with good sensitivity (LOD = 0.52 nM). trans-BODIPY-DCH coupled with nerve agent mimics, affording a blue fluorescent 8-amino-BODIPY tautomer. Furthermore, a portable test kit using trans-BODIPY-DCH displayed an instant response and low detection limits for multiple CWAs. This platform enables rapid and highly sensitive visual screening of various CWAs. Chemical warfare agents (CWAs) such as phosgene and nerve agents pose serious threats to our lives and public security, necessitating tools that can simultaneously screen multiple CWAs in seconds.![]()
Collapse
Affiliation(s)
- Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Tianhong Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Beitong Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
- School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
22
|
Suhasini R, Karpagam R, Thirumoorthy K, Thiagarajan V. "Turn-on" unsymmetrical azine based fluorophore for the selective detection of diethylchlorophosphate via photoinduced electron transfer to intramolecular charge transfer pathway. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120206. [PMID: 34325173 DOI: 10.1016/j.saa.2021.120206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The detection of chemical warfare agents (CWAs) in a highly selective, sensitive and speedy manner is essential for public safety in the case of terrorist attacks and achieving this is a challenging task. This study involves in developing a new unsymmetrical azine based fluorophore 4-((E)-(((E)-2-methoxybenzylidene)hydrazono)methyl)benzonitrile[A1] which shows high selectivity and sensitivity to the nerve agent mimic molecule, diethylchlorophosphate (DCP) through fluorescence switch on mechanism. In a fascinating manner, DCP sensing by A1 operates via solvent dependent optical output mechanisms. In the absence of DCP, the fluorescence of A1 was in the off state through photoinduced electron transfer process. In the presence of DCP, a nucleophilic substitution reaction occurs at the imine nitrogen is closer to the anisole moiety that results in the formation of a new intramolecular charge transfer state along with fluorescence enhancement. In acetonitrile, A1 shows 1763-fold fluorescence enhancement in the presence of DCP with a detection limit of 9.86 nM. In Acetonitrile/water (2:8) mixture, protonation at the imine nitrogen leads to 1188-fold fluorescence enhancement. The sensing mechanisms are confirmed by both experimental and time dependent density functional theoretical studies.
Collapse
Affiliation(s)
- Ramalingam Suhasini
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Rajappa Karpagam
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Viruthachalam Thiagarajan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India; Faculty Recharge Programme, University Grants Commission, New Delhi, India.
| |
Collapse
|
23
|
Dey N, Kulhánek J, Bureš F, Bhattacharya S. Imidazole-Functionalized Y-Shaped Push-Pull Dye for Nerve Agent Sensing as well as a Catalyst for Their Detoxification. J Org Chem 2021; 86:14663-14671. [PMID: 34648709 DOI: 10.1021/acs.joc.1c01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Y-shaped push-pull dye (1) with N,N-dimethylanilino donors and a benzonitrile acceptor connected via an imidazole-based π-conjugated spacer was designed. It showed a dark yellow color in solution due to facile intramolecular charge-transfer interaction, but no fluorescence was detected, presumably due to the photo-induced electron transfer effect of the imidazole moiety. However, addition of nerve agents such as diethyl chlorophosphate (DCP, sarin mimic) and diethyl cyanophosphate (DCNP, Tabun mimic) resulted in a blue-colored fluorescence with fading of the native dark yellow color. Mechanistic studies indicated nucleophilic attack of imidazole at the phosphorus of DCP or DCNP, leading to the formation of a phosphorylated intermediate, which undergoes time-dependent hydrolysis (∼24 h) in aqueous medium. This process recovers the free probe (enzyme-like behavior) and releases a less-toxic organophosphate compound as the byproduct. The phosphorylated derivative of 1, formed during such interaction, shows a different electronic behavior, which reduces the extent of charge-transfer interaction as well as nonradiative decay and supports emissive properties. Considering the high sensitivity of 1 towards DCP and DCNP with LOD 35 and 42 ppb, we prepared easy test strips for on-site vapor-phase detection of nerve agents.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Telangana 500078, India
| | - Jiří Kulhánek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 53210, Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 53210, Czech Republic
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.,School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
24
|
Kumar V. Design and development of a prototype for specific naked-eye detection of blister and nerve agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2248-2255. [PMID: 33955978 DOI: 10.1039/d1ay00449b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In view of the strong need to strengthen the national security arising from chemical terrorism, a rapid, specific, and onsite detection of chemical warfare agents (CWAs) employing a simple and easy-to-use kit is of utmost importance. Constant and sincere efforts are being carried out by the scientific community to find reliable techniques/methods for early warning detection. Herein, we designed a prototype technique in the form of a smart and portable chemical weapon detection kit (CWDK) to facilitate rapid and onsite detection. In this portable kit, a range of unique chemical probes were condensed to achieve the specific chromogenic and fluorogenic detection and discrimination of each member of blister and nerve agents. The embodiment of three chemical probes (Fc, SQ, and LH2) was eventually employed in a compact and flexible plastic packaging for detecting the presence of CWAs with the 'naked-eye' in the areas where laboratory services do not normally exist. The CWDK contains dye/reagent vials, sampling assembly, and a UV torch. The convenience and practicality of this technique suggest a great prospect for highly specific sensing of the complete class of CWAs with fast and accurate results in real-time scenarios with a sensitivity much below their lethal dose.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|