1
|
Munthasir ATM, Rani P, Dhanalakshmi P, Pradhan S, Thilagar P. Polymorphism Dependent Cytotoxicity, Cellular Uptake, and Live Cell Imaging Studies on Napthalimide-Vinyl-Phenothiazine Conjugate. Chemistry 2024:e202400868. [PMID: 38576402 DOI: 10.1002/chem.202400868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Polymorphism-dependent cytotoxicity and cellular uptake of drug molecules have been studied for the past two decades. However, the visualization of polymorph-dependent cellular uptake and cytotoxicity using microscopy imaging techniques has not yet been reported. The luminescent polymorph is an ideal candidate to validate the above hypothesis. Herein, we report the polymorph-dependent cellular uptake, cytotoxicity, and bio-imaging functions of polymorphs 1Y and 1R of a naphthalimide-phenothiazine dyad. These polymorphs show different luminescence colors in the solid state and exhibit aggregation-induced enhanced emission (AIEE) in the DMSO-Water mixture. Bioimaging, cytotoxicity assay, and fluorescence-activated cell sorting (FACS) studies revealed that these polymorphs show different levels of cytotoxicity, cellular uptake, localization, and imaging potential. Detailed photophysical, morphological, and biological studies revealed that the difference in molecular conformation in these polymorphs enables them to form aggregates of different sizes and morphology, which leads to the differential uptake of these into the cells and consequently shows different cytotoxicity and imaging potentials.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Bengaluru, India -, 560012
| |
Collapse
|
2
|
Duan X, Zhang J, Liu Y, Zhang M, Jiang YN, Ma Y. Crucial Role of Defect States in the Ultralong Phosphorescence of Organic Molecular Crystals. J Phys Chem Lett 2023; 14:230-236. [PMID: 36594617 DOI: 10.1021/acs.jpclett.2c03604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultralong organic phosphorescence (UOP) in pure organic molecular crystals has attracted a lot of interest recently. There is much debate on the emission mechanism of this UOP. Two recent experimental works published in Nat. Photonics 2019, 13, 406-411 and Nat. Mater. 2021, 20, 175-180 attribute UOP in the 2,4,6-trimethoxy-1,3,5-triazine (TMOT) crystals and the carbazole crystals to H-aggregation of the TMOT molecules or the formation of charge-transfer excitons between the carbazole and impurity molecules. Our first-principles many-body Green's function theory calculations show that the lowest triplet states of these two crystals are in fact the localized defect states originating from the twisted TMOT molecules and the impurities, respectively. Energies of the H-aggregation-induced exciton and the charge-transfer exciton are too high to account for UOP. UOP should be mainly due to the little orbital overlap between the localized defect state and the delocalized band edges of the crystal. Strong intermolecular interactions suppress nonradiative decay of the triplet exciton localized on the defect.
Collapse
Affiliation(s)
- Xiujuan Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaru Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ya-Nan Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Shi H, Yao W, Ye W, Ma H, Huang W, An Z. Ultralong Organic Phosphorescence: From Material Design to Applications. Acc Chem Res 2022; 55:3445-3459. [PMID: 36368944 DOI: 10.1021/acs.accounts.2c00514] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Organic phosphorescence is defined as a radiative transition between the different spin multiplicities of an organic molecule after excitation; here, we refer to the photoexcitation. Unlike fluorescence, it shows a long emission lifetime (∼μs), large Stokes shift, and rich excited state properties, attracting considerable attention in organic electronics during the past years. Ultralong organic phosphorescence (UOP), a type of persistent luminescence in organic phosphors, shows an emission lifetime of over 100 ms normally according to the resolution limit of the naked eye. According to the Jablonski energy diagram, two prerequisites are necessary for UOP generation and enhancement. One is to promote intersystem crossing (ISC) of the excitons from the excited singlet to triplet states by enhancing the spin-orbit coupling (SOC); the other is to suppress the nonradiative transitions of the excitons from the excited triplet states.In this Account, we will give a summary of our research on ultralong organic phosphorescence, including the design of materials, manipulation of properties, fabrication of nano/microstructures, and function applications. First, we give a brief introduction to the UOP development. Then, we discuss the constructed methods of UOP materials from the inter/intramolecular interaction types, including π-π interactions, intermolecular hydrogen bonds, halogen bonds, ionic bonds, covalent bonds, and so on. These effective interactions can build a rigid environment to restrain the nonradiative transitions from the molecular motions or external quenching by oxygen, moisture, or heat, and thus enhance the UOP performance. Next, the manipulation of UOP properties, containing excitation wavelength, emission colors, lifetimes, and quantum efficiency (QE), through molecular or crystal engineering will be summarized. Recently, the excitation wavelengths of the materials for UOP can be regulated in different regions, such as UV, visible light, and X-ray; the emission colors of UOP can cover the whole visible-light region, from deep blue to red; the phosphorescence lifetime of UOP materials can reach 2.5 s, and the quantum efficiency can be achieved up to 96.5%. Moreover, we will present the fabrication of micro/nanoscale UOP materials, including the preparation of micro/nanostructure, optical performance, and device fabrication. Afterward, we will review the potential applications of UOP materials in organic/bio-optoelectronics, such as information encryption, bioimaging, sensing, afterglow display, etc. Finally, an outlook on the development of UOP materials and applications will be proposed.
Collapse
Affiliation(s)
- Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Wei Yao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211816, China
| |
Collapse
|
4
|
Wang JX, Peng LY, Liu ZF, Zhu X, Niu LY, Cui G, Yang QZ. Tunable Fluorescence and Afterglow in Organic Crystals for Temperature Sensing. J Phys Chem Lett 2022; 13:1985-1990. [PMID: 35188776 PMCID: PMC8900125 DOI: 10.1021/acs.jpclett.2c00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The modulation of the properties of emission from multiple emission states in a single-component organic luminescent material is highly desirable in data anticounterfeiting, information storage, and bioapplications. Here, a single-component luminescent organic crystal of difluoroboron diphenyl β-diketonate with controllable multiple emission colors is successfully reported. The temperature-dependent luminescence experiments supported by high-level theoretical calculations demonstrate that the ratio of the fluorescence between the monomer and excimer and the phosphorescence maxima of the excimer can be effectively regulated. In addition, the temperature-dependent fluorescence and afterglow dual-emission color changes provide a new strategy for the design of highly accurate double-checked temperature sensors.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ling-Ya Peng
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, P. R. China
| | - Zheng-Fei Liu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xin Zhu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li-Ya Niu
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, P. R. China
| | - Qing-Zheng Yang
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|