1
|
Stinglhamer M, Kuhlmann JH, Martinelli E, Perulli S, Sandvoss M, Mück-Lichtenfeld C, Derdau V, García Mancheño O. Site-selective Photoredox-Catalyzed Late-stage Benzylic Hydrogen Isotope Exchange. Angew Chem Int Ed Engl 2024:e202411567. [PMID: 39343751 DOI: 10.1002/anie.202411567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
A highly regioselective visible light photoredox-catalyzed hydrogen isotope exchange (HIE) of benzylic positions in both simple and complex molecules is reported. The process follows a dual catalytic approach using an acridinium photocatalyst in combination with a thiol-based hydrogen atom transfer catalyst, while the use of D2O as an isotope source ensures operational simplicity and cost-effectiveness. High reactivity has been achieved for electron-rich benzylic positions. Moreover, targeted radical formation enables unprecedented selective HIE on intramolecular competing benzylic and alpha to heteroatom positions with moderate to excellent deuterium incorporation. The utility of the reaction was demonstrated on the late-stage HIE of several natural compounds and drug derivatives. Experimental studies and density functional theory (DFT) calculations suggested a single electron transfer (SET) mechanism followed by deprotonation to generate the benzylic radical, and revealed the importance of halogenated solvents or additives. Upon a weak complexation of the halogenated species to the substrate, an oxidation potential lowering effect is induced, as well as a stabilization of the radical-cation species through spin delocalization.
Collapse
Affiliation(s)
- Martin Stinglhamer
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jan Hendrik Kuhlmann
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Elisa Martinelli
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stefania Perulli
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | | | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
2
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
3
|
Lavrencic L, Dhawa U, Blumenstein A, Hu X. Copper-Catalyzed Benzylic Functionalization of Lignin-Derived Monomers. CHEMSUSCHEM 2023; 16:e202300703. [PMID: 37432646 DOI: 10.1002/cssc.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Within the field of lignin biorefining, significant research effort has been dedicated to the advancement of catalytic methods for lignocellulose depolymerization. However, another key challenge in lignin valorization is the conversion of the obtained monomers into higher value-added products. To address this challenge, new catalytic methods that can fully embrace the inherent complexity of their target substrates are needed. Here, we describe copper-catalyzed reactions for benzylic functionalization of lignin-derived phenolics via intermediate formation of hexafluoroisopropoxy-masked para-quinone methides (p-QMs). By controlling the rates of copper catalyst turnover and p-QM release, we have developed copper-catalyzed allylation and alkynylation reactions of lignin-derived monomers to install various unsaturated fragments amenable to further synthetic applications.
Collapse
Affiliation(s)
- Lara Lavrencic
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Uttam Dhawa
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Arthur Blumenstein
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), BCH 3305, Lausanne, 1015, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Ballarotto M, Willems S, Stiller T, Nawa F, Marschner JA, Grisoni F, Merk D. De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime. J Med Chem 2023. [PMID: 37256819 DOI: 10.1021/acs.jmedchem.3c00485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Generative neural networks trained on SMILES can design innovative bioactive molecules de novo. These so-called chemical language models (CLMs) have typically been trained on tens of template molecules for fine-tuning. However, it is challenging to apply CLM to orphan targets with few known ligands. We have fine-tuned a CLM with a single potent Nurr1 agonist as template in a fragment-augmented fashion and obtained novel Nurr1 agonists using sampling frequency for design prioritization. Nanomolar potency and binding affinity of the top-ranking design and its structural novelty compared to available Nurr1 ligands highlight its value as an early chemical tool and as a lead for Nurr1 agonist development, as well as the applicability of CLM in very low-data scenarios.
Collapse
Affiliation(s)
- Marco Ballarotto
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Sabine Willems
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Tanja Stiller
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Francesca Grisoni
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584CB Utrecht, The Netherlands
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
5
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
6
|
Stinglhamer M, Yzeiri X, Rohlfs T, Brandhofer T, Daniliuc CG, García Mancheño O. Direct Access to Unnatural Cyclobutane α-Amino Acids through Visible Light Catalyzed [2+2]-Cycloaddition. ACS ORGANIC & INORGANIC AU 2022; 2:496-501. [PMID: 36510614 PMCID: PMC9732878 DOI: 10.1021/acsorginorgau.2c00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022]
Abstract
In this work, we report the first selective, photocatalyzed [2+2]-cycloaddition of dehydroamino acids with styrene-type olefins. This simple, mild, and scalable approach relies on the use of the triplet energy transfer catalyst [Ir(dFCF3ppy2)dtbpy]PF6 under visible light irradiation and provides fast access to value-added substituted strained cyclobutane α-amino acid derivatives.
Collapse
Affiliation(s)
- Martin Stinglhamer
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Xheila Yzeiri
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,Institute
of Chemistry of Organometallic Compounds, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Tabea Rohlfs
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Tobias Brandhofer
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Olga García Mancheño
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany,
| |
Collapse
|
7
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
8
|
Kato T, Maruoka K. Selective functionalization of benzylic C-H bonds of two different benzylic ethers by bowl-shaped N-hydroxyimide derivatives as efficient organoradical catalysts. Chem Commun (Camb) 2021; 58:1021-1024. [PMID: 34951412 DOI: 10.1039/d1cc06425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, site-selective benzylic C-H bond amination of two different benzylic ether substrates was described by using bowl-shaped N-hydroxyimide organoradical catalysts with diethyl azodicarboxylate. The synthetic utility of this approach is demonstrated by the subsequent transformation of the amination products into the corresponding aldehydes and alkylhydrazines.
Collapse
Affiliation(s)
- Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|