1
|
Du K, Wang M, Liang Z, Lv Q, Hou H, Lei S, Hussain S, Liu G, Liu J, Qiao G. Quasi-one-dimensional phosphorene nanoribbons grown on silicon by space-confined chemical vapor transport. Chem Commun (Camb) 2023; 59:2433-2436. [PMID: 36723200 DOI: 10.1039/d2cc06813c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphorene nanoribbons (PNRs) combine the flexibility of one-dimensional (1D) nanomaterials with the large specific surface area and the edge and electron confinement effects of two-dimensional (2D) nanomaterials. In spite of the substantial advances in bulk black phosphorus (BP) manufacturing, achieving PNRs without degradation is still a big challenge. In this work, we present a strategy for the space-confined chemical vapor transport synthesis of quasi-one-dimensional surface-passivated monocrystalline PNRs on a silicon substrate. The growth mechanism of the PNRs is proposed by combining experimental results and DFT calculations, indicating that the P4 molecules can break, restructure, and epitaxially nucleate on the surface of the Au3SnP7 catalyst, and finally prefer to grow along the zigzag (ZZ) direction to form PNRs. The low gas flow rate and an appropriate phosphorus molecule concentration allow the growth of PNRs with structural integrity, which can be regulated by the amount of red phosphorus and the confined space.
Collapse
Affiliation(s)
- Kaixiang Du
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Mingyuan Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, 210096, Nanjing, China
| | - Zhiping Liang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Quanjiang Lv
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Haigang Hou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuangying Lei
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, 210096, Nanjing, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Junlin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Zhang J, Ma J, Feng X. Precision Synthesis of Boron‐doped Graphene Nanoribbons: Recent Progress and Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
- Department of Synthetic Materials and Functional Devices Max Planck Institute of Microstructure Physics Halle Germany
| |
Collapse
|
3
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|