1
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Ali AA, You M. DNA-modulated dimerization and oligomerization of cell membrane receptors. Chem Commun (Camb) 2024; 60:10265-10279. [PMID: 39190295 PMCID: PMC11415102 DOI: 10.1039/d4cc03077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
DNA-based nanostructures and nanodevices have recently been employed for a broad range of applications in modulating the assemblies and interaction patterns of different cell membrane receptors. These versatile nanodevices can be rationally designed with modular structures, easily programmed and tweaked such that they may act as smart chemical biology and cell biology tools to reveal insights into complicated cellular signaling processes. Their outstanding in vitro and cellular features have also begun to be further validated for some in vivo applications and demonstrated their great biomedical potential. In this review, we will highlight some key current advances in the molecular engineering and biological applications of DNA-based functional nanodevices, with a focus on how these tools have been used to respond and modulate membrane receptor dimerizations and/or oligomerizations, as a way to control cellular signaling processes. Some current challenges and future directions to further develop and apply these DNA nanodevices will also be discussed.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Dinsmore CJ, Soriano P. Conditional fluorescent mouse translocation reporters for ERK1/2 and AKT signaling. Dev Biol 2023; 503:113-119. [PMID: 37660778 PMCID: PMC10529872 DOI: 10.1016/j.ydbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Understanding how cells activate intracellular signaling pathways in response to external signals, such as growth factors, is a longstanding goal of cell and developmental biology. Recently, live-cell signaling reporters have greatly expanded our understanding of signaling dynamics in response to wide-ranging stimuli and chemical or genetic perturbation, both ex vivo (cell lines) and in vivo (whole embryos or animals). Among the many varieties of reporter systems, translocation reporters that change sub-cellular localization in response to pathway activation have received considerable attention for their ease of use compared to FRET systems and favorable response times compared to transcriptional reporters. We reasoned that mouse reporter lines expressed in a conditional fashion would be a useful addition to the arsenal of mouse genetic tools, as such lines remain undeveloped despite widespread use of these sensors. We therefore created and validated two novel mouse reporter lines at the ROSA26 locus. One expresses an ERK1/2 pathway reporter and a nuclear marker from a single transcript, while the second additionally expresses an AKT reporter in order to simultaneously interrogate both pathways.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Liu H, Baeumler TA, Nakamura K, Okada Y, Cho S, Eguchi A, Kuroda D, Tsumoto K, Ueki R, Sando S. An Engineered Synthetic Receptor-Aptamer Pair for an Artificial Signal Transduction System. ACS NANO 2023; 17:9039-9048. [PMID: 37154259 DOI: 10.1021/acsnano.2c11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell membrane receptors regulate cellular responses through sensing extracellular environmental signals and subsequently transducing them. Receptor engineering provides a means of directing cells to react to a designated external cue and exert programmed functions. However, rational design and precise modulation of receptor signaling activity remain challenging. Here, we report an aptamer-based signal transduction system and its applications in controlling and customizing the functions of engineered receptors. A previously reported membrane receptor-aptamer pair was used to design a synthetic receptor system that transduces cell signaling depending on exogenous aptamer input. To eliminate the cross-reactivity of the receptor with its native ligand, the extracellular domain of the receptor was engineered to ensure that the receptor was solely activated by the DNA aptamer. The present system features tunability in the signaling output level using aptamer ligands with different receptor dimerization propensities. In addition, the functional programmability of DNA aptamers enables the modular sensing of extracellular molecules without the need for genetic engineering of the receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
5
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
6
|
Hu L, Liu K, Ren G, Liang J, Wu Y. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. Systematic Interrogation of Cellular Signaling in Live Cells Using a Membrane‐Anchored DNA Multitasking Processor. Angew Chem Int Ed Engl 2022; 61:e202113795. [DOI: 10.1002/anie.202113795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Shan Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials Fuzhou Institute of Oceanography Minjiang University Fuzhou 350108 P.R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
| | - Shiwei Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
| | - Hong Liang
- Fujian Key Laboratory of Functional Marine Sensing Materials Fuzhou Institute of Oceanography Minjiang University Fuzhou 350108 P.R. China
| | - Chen Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials Fuzhou Institute of Oceanography Minjiang University Fuzhou 350108 P.R. China
| | - Zonghua Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials Fuzhou Institute of Oceanography Minjiang University Fuzhou 350108 P.R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
- College of Biological Science and Engineering Fuzhou University Fuzhou 350108 P.R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P.R. China
| |
Collapse
|
8
|
Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. Systematic Interrogation of Cellular Signaling in Live Cells using a Membrane‐anchored DNA Multitasking Processor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Chen
- Minjiang University Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography CHINA
| | - Zhifei Xu
- Fuzhou University College of Chemistry CHINA
| | - Shiwei Li
- Fuzhou University College of Chemistry CHINA
| | - Hong Liang
- Minjiang University Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography CHINA
| | - Chen Zhang
- Minjiang University Fujian Key Laboratory of Functional Sensing Materials, Fuzhou Institute of Oceanography CHINA
| | - Zonghua Wang
- Minjiang University Fujian Key Laboratory of Functional Sensing Materials, Fuzhou Institute of Oceanography CHINA
| | - Jingying Li
- Fuzhou University College of Biological Science and Engineering Qi Shan Campus of Fuzhou University,2 Xue Yuan Road 350108 Fuzhou CHINA
| | - Juan Li
- Fuzhou University College of Chemistry CHINA
| | | |
Collapse
|
9
|
Hoshiyama J, Okada Y, Hayata Y, Eguchi A, Ueki R, Sando S. Characterization of a DNA Aptamer with High Specificity toward Fibroblast Growth Factor Receptor 1. CHEM LETT 2021. [DOI: 10.1246/cl.210505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junya Hoshiyama
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuga Okada
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuri Hayata
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Eguchi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Akiyama M, Ueki R, Yanagawa M, Abe M, Hiroshima M, Sako Y, Sando S. DNA‐Based Synthetic Growth Factor Surrogates with Fine‐Tuned Agonism**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Momoko Akiyama
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Michio Hiroshima
- Cellular Informatics Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Laboratory for Cell Signaling Dynamics RIKEN Center for, Biosystems Dynamics Research 6-2-3, Furuedai, Suita Osaka 565-0874 Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
11
|
Akiyama M, Ueki R, Yanagawa M, Abe M, Hiroshima M, Sako Y, Sando S. DNA-Based Synthetic Growth Factor Surrogates with Fine-Tuned Agonism*. Angew Chem Int Ed Engl 2021; 60:22745-22752. [PMID: 34142433 DOI: 10.1002/anie.202105314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Indexed: 11/06/2022]
Abstract
Designing synthetic surrogates of functional proteins is an important, albeit challenging, task in the field of chemistry. A strategy toward the design of synthetic agonists for growth factor or cytokine receptors that elicit a desired signal activity has been in high demand, as such ligands hold great promise as safer and more effective therapeutics. In the present study, we used a DNA aptamer as a building block and described the strategy-guided design of a synthetic receptor agonist with fine-tuned agonism. The developed synthetic partial agonist can regulate therapeutically relevant cellular activities by eliciting fine-tuned receptor signaling.
Collapse
Affiliation(s)
- Momoko Akiyama
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory for Cell Signaling Dynamics, RIKEN Center for, Biosystems Dynamics Research, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|